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The paper reveals a new interpretation of the Standard Model for elementary particle 

physics. The approach is based on the concept of chaotic behavior applied to the gauge 

transformation. Following the framework of bifurcation theory, the paper provides a simple 

and consistent picture of lepton and boson production. 

The author reveals the fractal structure of the quantum harmonic oscillator. A map of 

quantum field organisation is developed together with the Lagrangian formalism of the 

model. On this map the structure of the field appears as a “branching out” pattern. 

The paper describes the internal symmetry between gravity and electromagnetism with 

respect to the gauge transformation. A discussion on the physical meaning of the W field and 

of the isospin eigenstate r, is included. 

1. Introduction 

A major achievement in the field of elementary particle physics has been the 

development of the Standard Model (SM). As is currently accepted,this model 
represents a unique synthesis of the theory of the strong force (QCD) with the 
theory of electroweak interaction. QCD is basically a non-Abelian gauge 
theory on the SU(3) color while the electroweak model successfully describes 

the interaction of quarks and leptons. 
Although a formally consistent approach, SM is far from being completed. 

There are several open questions that await clarification and further extensions 
are yet to come. Among the issues that are not covered by the SM, the key 
ones are as follows: 
(A) Why are there three families of gauge bosons? 
(B) Why are there three flavors of neutrinos and why are they left-handed? 
(C) Why six quarks and eight gluons? 
(D) Is there a physical background underlying the spontaneous breaking of 

symmetry and is the Higgs mechanism the only way to understand the 
mass spectrum? 

037%4371/90/$03.50 0 Elsevier Science Publishers B.V. 
(North-Holland) 



400 E. Goldfain I A bifurcation model of the quantum field 

The present paper is intended to fill in some of the remaining “holes” in the 

conceptual structure of the SM. 

The approach is based upon the geometry of fractals and the theory of 

bifurcations applied to nonlinear dynamical systems. As stated, our goal is to 

deepen the understanding of SM without altering its fundamental construction. 

Consequently, our theory suggests an alternative route to SM. 

Fractals have found wide application in many forefront areas of physics such 

as condensed matter, crystals growth, polymer statistics, fracture propagation, 

physics of spin systems and so on. 

An analysis of the quantum harmonic oscillator performed in phase space 

reveals that it is possible to assign a fractal configuration to this space. Since 

the scale invariant properties of fractals are intimately connected with the 

chaotic behavior of nonlinear systems, it makes sense to further investigate 

how these concepts can be incorporated in the SM. 

The physical foundation of this treatment lies in the following: 

(A) All elementary particles (leptons, quarks and gauge bosons)-taken as 

solutions of the quantum field equations-are essentially nonlinear dynami- 

cal systems. 

(B) The bifurcation theory-as developed by Feigenbaum in 1977-claims uni- 

versality over the internal evolution of nonlinear dynamical systems. 

As a result, there is a specific instability associated with the equations 

describing the field transformations. It is shown that this mechanism can unveil 

the spectrum of field quanta in a sequential manner. 

The paper develops by applying the theory of bifurcations directly to the 

gauge transformation. The gauge transformation is the backbone of the whole 

SM construction. It is the nonabelian gauge invariance that makes the SM a 

renormalizable theory and determines the phenomenological structure of it [l]. 

The main benefit of this approach lies in the fact that particles appear 

organized in a regular and self-similar pattern. The quantum field has a 

structure which repeats itself from family to family. This “branching-out” 

layout is consistent with the nonabelian symmetries of the SM and brings into a 

unique picture all known bosons and fermions. 

A possible extension of the bifurcation model is also outlined. This formal- 

ism explores the derivation of vacuum expectation values for the field in a 

manner that bypasses the Higgs mechanism. As mentioned earlier, the frame- 

work of the Higgs mechanism is not presently understood. 

The paper finally examines a possible extension of the bifurcation model to 

include the gravitational field in the picture. The underlying physics relates to 

the internal symmetry of gravity and electromagnetism with respect to the 

gauge transformation. A discussion on the physical meaning of the W boson 

and of the isospin T3 is presented. Several postulates are introduced to make 
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the treatment self-contained and to set its limits of validity. The rationale of 
each postulate is briefly reviewed below: 

(Pl). This postulate originates in the uncertainty principle and sets the 
quantum-mechanical zero point fluctuations of canonical variables. Therefore it 
has to be understood as a definition of the first order differential from the 
standpoint of the measurement process. 

(P2). This postulate states the definition of a “noise-free” representation of 
the theory and originates also in the measurement process of canonical 
variables. 

(P3). This postulate is a consequence of the “charge” conservation theorems 
from the relativistic quantum field theory. 

(P4), (P5). Th ese are transcriptions of the exclusion principle and of the 
Schwinger-Luders-Pauli theorem, respectively. 

Our approach is part of a general effort of theorists to broaden the 
knowledge basis of SM. Its relationship with the SM lies mainly in the so-called 
Renormalization Group ideas [l, 21 as implied by the diagram in fig. 1. 

2. A fractal treatment of the harmonic oscillator 

This section is an attempt to prove that the one-dimensional vibrational 
mode can be represented as a fractal object. As is well known, the linear 
harmonic oscillator is described by canonical operators p and q satisfying the 
commutation relation 

Eq, PI = i . (1) 
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The analogous classical system exhibits elliptical orbits in the phase space, 

where E is the total energy and m is the reduced mass of the particle. The area 
determined by the orbit boundary is always a finite number: 

S= pdq=n+i, 
I 
D 

(3) 

II being a finite positive integer (Sommerfeld’s quantisation rule). To evaluate 
the length of the orbit boundary we introduce two postulates as follows. 

(Pl) . The first order differential of canonical variables has the same order 
of magnitude as their respective fluctuations [3], 

dq = Aq = (2~))“~ (4) 

dp=Ap>(2Aq)-’ (5) 

(P2). The coordinate fluctuation is smaller than the coordinate itself: 

Aq/q = 1 /q(2w)“2 < 1 (6) 

The above statement takes into account the fact that measurement of q is 
supposed to provide an acceptable level of resolution. Only this circumstance is 
able to generate a “noise-free” representation of the field behaviour. The 
length of the orbit is the line integral given by 

(2Eimoq"z 

L=4 1 [l+(z)2j”2dq. 
0 

(7) 

Let us replace now the orbit slope by the ratio of coordinate and momentum 
fluctuations and use postulate (P2), 

(2Elm~*)"~ (2ElmoJZ)"* 

La4 
I 

[l + :(Aq)-“I”’ dq 2 4 
I 

[l + t(q)-“]“‘dq (8) 
0 0 

(2Elmo2)"* 

L 
+-a I q -‘( 1 + 4q4)“2 dq = j.. . + ‘2E’r2)1”. . . 2 . (9) 

0 0 1 
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This definite integral can be computed starting from the general form [4]: 

1 

J = 
i 

x+(1 - x)“-‘(1 + bx”)’ dx (b2 > 1) > (10) 

0 

where 

p=-1, n=l, m = 4, 1= i and [0, l] E [0, (2Elmw2)“2] , 

(11) 

which leads us to the following result: 

L a2 c 1 4KwK- 1) / 
K=l 2K 

where r represents 

Q1+ 2) = z! ) 

such that 

Q4K) ’ 

the factorial function 

131 

(13) 

(14) 

This numerical series diverges according to D’Alembert’s convergence criterion 

[41: 

u 
lim + = 4 lim 

K(4K - 1) 
K--ta K K-a (K+1)(4K+3) =4’1’ (15) 

The result above indicates that the orbit length is a nonfinite quantity while the 
area (3) bounded by the same orbit remains finite. This indicates that the 
quantum field associated with the harmonic oscillator is suitable for a fractal 

description. Furthermore, since scale invariant properties of fractals are closely 
related to “chaos” and “strange attractors” in dynamical systems, it makes 
sense to attempt to fuse these concepts to SM. 

3. The chaotic behavior of the global gauge transformation 

Consider an isolated packet of waves representing an arbitrary free field 
4(x). There are many examples of such “soliton-like” modes which can be 
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configurated as local peaks. For instance one can take the ground state of the 
quantum harmonic oscillator [5] : 

4’“(x) - exp(- 1.x’) , (16) 

where x stands for the field coordinate and the first order Hermite polynomial 
is 

H,(x) = 1 . (17) 

Another traditional “soliton-like” wave can be introduced by performing a 
Fourier transformation on the space packet such that [6] 

4,(k) - j- d3X exp(-ik* x)+~(x) . (18) 
D 

With a translation of the wave number. 

k’=k-k,, (19) 

where 

k, = 2~lh, , (20) 

the function (18) has a unique maximum at k’ = 0 and is symmetrical with 
respect to the origin: 

&$,lc?k’ > 0 for k’<O, 

(21) 
d~o,/ak’ < 0 for k’>O. 

Consider now the standard gauge transformation which leaves the structure of 
the theory invariant [l] and apply this to (18): 

rb,W-+ &i(k) = exp(-ix) 4,(k) T (22) 

where x is equivalent to an arbitrary “phase” factor. Notice that exp(-ily) can 
be thought as a rotation operator in an appropriate space such that its 
components are always smaller or equal than unity. Since rotations generate a 
group of transformations with multiplication as a composition rule, a sequence 
of iterations applied to (22) will not alter its form. Consequently, from a 
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physical standpoint, there is no way of separating “a priori” a first order 
iteration from a nth order one g_iven by 

&Q(k) = 40. (4,. (40 * . * . * 4dk))) = exp(-inx) 4,(k) . (23) 

n times 

On the other hand, transformation (22) defined above belongs to a larger class 
of mappings which display chaotic behavior. Under a given set of iterations, 
(22) may exhibit convergence to a stable attractor or erratic divergence 
depending on the phase selection. It is shown that a gradual variation of the 
phase factor drives a sequence of bifurcations such that, for each j 3 0, function 
(22) has a single unstable orbit of period 2’ [2]. On letting the phase vary 
beyond a critical value the cycles generation replicates itself and (22) develops 
unstable orbits of period 3 * 2’. The bifurcation scenario unfolds in a manner 
that makes it comparable to the concept of scale invariance derived from the 
geometry of fractal sets. 

The chaotic behavior of the gauge transformation is similar to the divergence 
associated with the harmonic solution of the Klein-Gordon equation 

@“a, + m’)C$ = 0, (24) 

where the frequency is a complex number, 

o=w,+iw,=-+~ (k=2n/A), (25) 

such that or = 0 defines the marginal stability and o, > 0 generates exponential- 
ly growing amplitudes [7]. 

The above considerations indicate that the non-univocity of phase choice 
leads to an internal instability of the gauge transformation. Therefore, the 
degeneracy of the gauge fields may be related to a “branching-out” pattern 
implied by the bifurcation mechanism. As a result, the operational equivalence 
of exp(-ix) and exp(-im;y) may be regarded as the source of field ar- 
chitecture. 

Furthermore, because gauging the elementary particles physics is the central 

idea of the Standard Model, we believe that a “chaotic” formalism can provide 
a simple and consistent description of the quantum field dynamics. 

4. Postulates and conventions 

To develop the frame of our approach the following statements are taken as 
assumptions: 
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(P3). Antisymmetric fields (labeling fermions) are generated or annihilated 
always in pairs. Consequently, the doublets are the fundamental eigenstates of 
the fermionic field, while singlets represent excited eigenstates. 

(P4). Exclusion principle applies to all fermions. 
(P5). CPT invariance is always valid when applied to either bosons or 

fermions while partial symmetries (like CP, P, T, . . .) are not necessarily valid 
and may be violated. 

As a result of (P5), CPT invariance operates as a restriction rule which 
forbids some of the field states to appear as distinct (see section 5). 

As a convention, the order in which the components of a doublet are listed 
corresponds to the time relationship between “cause” and “effect”. Therefore, 
if T stands for the time inversion operator and (f,, f,) is a generic doublet, 
then 

Finally, because the history of field transformation may be tracked in terms of 
phase selection (x) or the number of cycles accumulated within the bifurcation 
process (N), either one of these two variables can be taken as an independent 
field coordinate. 

5. The internal dynamics of the quantum field 

The goal of this section is to generate and explain a map of field dynamics as 
outlined in section 3. 

If one takes the period of cycles arisen from bifurcations as an input variable 
(N) and the phase x as the output, then a plot of the field architecture looks 
like fig. 2. 

In this map Vi, V,, V,, . . . or Vi, V2, . . . stand for bifurcation vertices. Let 

us consider a generic field of form (18) being subjected to the bifurcation 
mechanism. For the time being, the particular structure of the field is not 
relevant so &,(a) may be scalar, spinorial, vectorial or tensorial. In each of 
vertices Vj or V’ ( j s N) transformation of the field must face the following 
“dilemma”: if nj is the number of cycles already generated and pj is the number 
of new cycles, then the field behaves either symmetrically or antisymmetrically 
with respect to the transposition nj e- pj: 

+(nj, p,) = eim4( pi, nj) , eia = 21 . (27) 

It seems natural to assign the symmetry of the field in (27) to bosons while 
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Fig. 2. 

antisymmetry is associated with fermions. Since there is no privilege for either 
one of the two options, in each bifurcation vertex the field transformation may 
“jump” from the first branch of the plot to the second one. Therefore, if one 
considers the 2’ pattern of cycle accumulation typical for bosons and the 3.2’ 
pattern typical for fermions, a transition boson-fermion appears to be a 
natural consequence of (27). 

Let us discuss now each of the map vertices. Following the Standard Model, 
there are three symmetries to be taken into account for the gauge bosons: 
U(l), SU(2) and SU(3). Accordingly, three families of gauge bosons are 
introduced: the photon (y), the weak triplet (W+, W-, W”) and the multiplet 
of eight gluons (g, , g,, . . . , g,). The above map suggests a logical extension of 
this configuration as described below: 

(a) In Vi a number of 2l bosons are created and a natural partner for the 
photon (y) could be the graviton (g). 

(b) In V, a number of 22 bosons are created and the weak triplet may be 
replaced by two SU(2) weak triplets as follows: 

v,: G=(FGJ &=($j. (28) 

Here B” is the “extra” massive boson added to the initial family (W’, W-, 
W”). 
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(c) In V, a number of 23 bosom are created and these may be identified with 
the gluon multiplet (gr, g,, . . . , g,). 

Following a similar judgement one can describe the structure of the fer- 
mionic vertices V’. 

(a) At V’ the field triplicates because a number of 3 .2’ fermions are created. 
According to postulate (P3) these eigenstates must be doublets. Since a 
transition boson-fermion is likely to take place (see (27)) and V, is the nearest 
bosonic vertex, it makes sense to assume that V’ is filled in with ultrarelativistic 
doublets (neutrino type), 

V’: (VP_, i,) ) (yLL) “,) , (v,, C,) . (29) 

We will focus below only on the electronic neutrino branch. Assuming the CPT 

invariance (postulate (P5)), neutrino doublets appear only in a polarized state. 
If L and R stand for “left-hand” and “right-hand”, then 

Cm: (u,, G,)L+ (u,, ie>R , (30) 

where the following line of operations was performed: 

Consequently, the left-handed neutrinos and the right-handed ones are over- 
lapped and only one polarized doublet has physical meaning. This conclusion 
agrees with the experimental data [l]. 

(b) At V2 a number of 3 * 2l eigenstates develops. It makes sense to fill in 
this vertex with those leptons which make transitions from the neighbouring 
vertices possible. It appears that the electroweak interaction must play here a 
major role. A plausible configuration of V2 may look like 

V2: (e-, iJR , 6 IL y (e+, VA_ , (e+, JR , 

( ,e-),, ( ,e+)L. 
(32) 

The first state is a SU(2) doublet while the second one is a SU(2) singlet. The 
reason for introducing such a singlet lies in the formal symmetry between 
(e-, l)e)R and (e-, ),_. The component lie is missing from the excited state 
(e-, )L because left-handed antineutrinos are forbidden. The fourth and fifth 
states replicate the first and the second ones but are not identical with them. To 
check this statement one can apply a CPT operator such that 

(e-,V~)RS(e+,v,),f,(e+,v,),~(v,,e+), , (33) 
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(34) k,, e+L + (e+, VA. 

Also 

(e-, )LS(e+, )Ls(e+, jRff( ,e+h (35) 

( > e+h # (e+, h. (36) 

The fifth and sixth states enter as “mirror” images of electronic singlets as 
long as no privilege can be assigned to either left- or right-handed electrons. 
Relations (33) and (35) indicate that V2 can be basically structured on three 
levels in an analogous manner as V’, namely: V’: (electron “up”; electron- 
neutrino “middle”; electron “down”) because all the eigenstates listed in (32) 
are interchangeable with their symmetrical images. For instance, 

(e-, iJR = (II,, e+JL = T(e+, vJL , (37) 

(em, L=( ,e+>,=P( ,e+L. (38) 

(c) At V3 a number of 3 * 2’ eigenstates develops which can be related to V2 
and V,. Therefore, the structure of V3 may be based on the quarks family and 
displays the following organisation: 

(U,,d,),, @a, da)R, (L, $J,, L> &A 7 

v3: (up>dPL (Up,dp)m &&L (&_d& 7 (39) 

(ug> da),, (us, da),, (us>d,),, (%, d,), . 

Here (a, p, 6) is the triplet of colors carried by quarks such that 

a+P+S=l. (40) 

Let us point out that quarks enter only in doublets and cannot be therefore 
isolated as single excitations. Quark triplets appear as linear superpositions of 
these doublets. 

Since every color has an anticolor (6, 6 or s), CPT invariance must be 
operating as a prohibiting criterion for additional combinations in (39). In 
particular 

Notice here that C operates on the color only. If C would have been set to 
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Table I 

Vertex 

VI 

V, 
V, 
V’ 

V2 

V3 

N Configuration 

2 Yg 
4 W’ W” B0 W- 

8 g, gz 1 Y g7 EL? 
3 (“,> “,I (v,, ;,I (v,, i,) 
6 (em,~,),(em, L(e+,v,),(e+, h( ,e-),( ,e+L 

12 (u,,d,),(u,,d,), (%dyL@y>dJR 

operate on the quark itself, then 

(42) 

To conclude this section let us mention that the muonic and taonic branches 
separated at V’ are equivalent to the electronic branch discussed above. 
Therefore, the field architecture stays invariant with respect to the substitution 

(u,, e, u, d)+ (vwL) P, c, s>+ (u,, 7, b, t) . (43) 

All the above results can be listed in one summary table as presented in table 
I. 

6. A Lagrangian description of the bifurcation model 

In the conventional formulation of the Standard Model, the full Lagrangian 
contains the operators of covariant differentiation in the kinetic term and 
mass + interaction contributions. For the bosons the mass term is -m2b2 and 
the interaction term is linear in b. For the fermions both mass and interaction 
terms depend linearly on the mass and the interaction is also a linear 
expression of the four-vector current, 

j” = fr"f (P = 0, 1,2,3) 9 (44) 

such that 

L, = 4 D,bDPb - m2b2 - bp(P) , 

(45) 
L, =fiy”D, f -fmf + Qfr”fA” , 

where Lb(Lf) stand for the bosonic (fermionic) lagrangian, p(x”) is the source 
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of the scalar field while Q and A are, respectively, the charge and four- 
potential of the vector field. 

To perform a complete description of a full Lagrangian, one would have to 
use a complicated formula taking into account all possible combinations 
between terms, such as 

L full = Lb + Lf + Lkinetic,bf + Lmass,bf + Linteraction,bf . (46) 

The full Lagrangian would have a composite structure including scalars, 
pseudoscalars, spinors or vectors. 

For our model we will attempt to get the full Lagrangian starting from a 
simpler and more effective framework. To achieve this, several principles are 
to be considered: 

(a) The approach is based upon a perturbative method. 
(b) The full Lagrangian takes the phase x as variable and the bosonic and 

fermionic fields as coefficients in the series expansion. 
(c) The series contains powers less or equal to four. It can be shown that 

powers greater than four lead to infinities and are to be excluded [l]. 
(d) The interaction for both bosonic and fermionic fields is included in the 

quartic term of the series. 
To derive the spectrum of the ground states arisen in a bifurcation vertex, 

one has to minimize the potential: 

aLint+,,,,Jax = 0 . (47) 

Following the standard procedure, further perturbations are defined by ex- 
panding the phase around the ground states. Accordingly, the ground states 
together with their perturbations fully specify the sequence of particles created 
as a result of bifurcation. An alternative expression for (23) is 

(48) 

where 

j=21, (494 

W) = (-1)‘4oW /(W 7 (49b) 

e=n2x2. (49c) 



412 E. Goldfain I A bifurcation model of the quantum field 

It is natural to assume that the general form of the function potential must be a 
power series of the field &(k): 

(50) 

as long as the Lagrangian has to be invariant under the gauge transformation 

WoWI-, Vbp(-ix) +oWl . (51) 

Replace now the terms in (50) by their gauge images given by (22), 

+Xk)-, exp(-inx) 43) = exd-inx) 40(k) 4;t-‘(k) , (52) 

01 

where 4r’(k) represents the nth iterate of 4,(k) (23). 
(50) then becomes 

v= f: a&-‘(k) &j(k), (54) 

or 

V(t) = a,+;T-‘W (55) 

Because the series must stop at the quartic term the exact formula (55) gives 
way to an approximate one: 

4 4 

V(t)- c &,(W’= c Q?. 
i=o I=0 

(56) 

To get an acceptable level of confidence for the use of (56) one must normalize 
(49~) such that 

ltl<1. (57) 

The interaction term is the last one (1= 4) and b, represents the strength 
coefficient for both fermions and bosons. 
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The mass term is a superposition of odd and even powers. Since the 
description is general, we would expect a symmetrical behaviour of the mass 
term for bosons and an antisymmetrical one for fermions. Therefore, (56) 
splits into two components, 

(58) 

V b,massw = &llass(-~) 
(at bifurcation vertices) . (59) 

v,,nI,,,(5) = +-fJil,,,(-5) 

Under these circumstances (47) gives for bosons 

&2 = +v=&E&. (60) 

These are the vacuum expectation values of 5 and the treatment coincides with 
the spontaneously broken symmetry approach for the so-called Higgs field [l]. 

For fermions we get a cubic equation with the canonic form 

(61) 

where 

p = 3b,/4b,, q=O, r = b,/4b, (b, # 0) . (62) 

To check the nature of its solution, one has to evaluate the discriminant Q 
given by [8] 

Q=&(-&p6)+$(&p3+r)*, (63) 

or 

Q= &p3r+ $r2=r($p3+ +,r). (64) 

As long as b, # 0 (r # 0) the cubic equation has three distinct roots which 
provide the vacuum expectation values for fermions. 

The vacuum solutions correspond to the true stationary levels of the field 
subjected to the bifurcation mechanism. Therefore, it makes sense to think of 
them as of “massless” states associated with the field. Consequently, ,$I,* are 
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connected with the photon and graviton (vertex Vi) while the three solutions of 
(61) relate to the ultrarelativistic neutrino doublets produced at vertex V’. 

Bifurcations evolve in a self-similar manner at next vertices repeating the 
pattern of V, or V’. This is, for instance, the reason why at V, (and V”) the 
map contains a duplicate (a triplicate, respectively) of the vacuum spectra, 

W’JV = I f > > 
(W”, B”) = I 1 > , 

(SU(2) doublet) (65) 

V2 

i 

K-, IL 3 (e+, M = I t > , 
: [(e-, iJR , (e+, ve>J = IO> , (SU(2) triplet) (66) 

[( > e )RY ( ,e+>,l= I 1 > . 

As perturbations of the vacuum states, vertices Vj or V’ ( j 3 2) carry an inner 
excitation energy related to the shift from the ground level. Accordingly, each 
of the vertices Vj or V’ ( j a 2) is the source of a unique mass spectrum. This 
circumstance supplies a plausible interpretation of how the mass should enter 

into the model. 

7. Inertial frames under Lorenz invariance 

The first segment of the bosonic branch (see fig. 2) represents the most 
familiar and simpler case of gauge invariance: the Lorenz transformation of 
inertial frames. It comes almost naturally to consider the covariance of the 
theory with respect to inertial frames as an immediate example of the gauge 
concept. 

We will show in section 8 that an identical approach covers the gauge 
formalism of both electromagnetic and gravitational fields. Consequently, the 
Lorenz transformation is to be thought only as a first order approximation of 
the gauge formalism up to the first vertex (Vi). 

Take two arbitrary inertial frames and let V stand for their relative linear 
velocity. In the Lorenz formula the rotational transposition of the coordinates 
operates as a 2 X 2 matrix, 

t’ 0 ( cos ?P sin !P t = 
x’ -sin?P cos?P )( > x ’ 

where 9 is the imaginary rotation angle given by 

V=itanYJ, 

sin ?P = -iVlVi? , cos?P=l/XfFi? 

(67) 

(68) 
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The space-time forms a continuous scalar field whose components are phy- 
sically equivalent. Following a standard representation, define the complex 
scalar 

rj’=(t’+ix’)lV?!=e-iy(t+ix)/~=e-iV~, 

77 ‘*=(t’-i~‘)/*=e’*.*. 
(69) 

Note that (69) is identical with (22). Consequently, the space-time can be 
treated as a regular pseudoscalar field. If m is the mass associated with it, the 
Lagrangian depends only on n*n: 

Two conserved “charges” emerge from Lorenz invariance of the field 7: 

S, = ihap 17* - 77*a, 77) , a,s, = 0, 

I = x2 - t* , a,z=o (interval) . 
(71) 

Let us recall now that the above relations (67)-(71) can be duplicated for 
the electromagnetic field under the following substitutions: 

x1-+ A’ (i = 1,2,3) ) 

(72) 
t+=d. 

Therefore, there is no formal difference between the behavior of the space- 
time field (xi, t) and the electromagnetic field (A’, r$) with respect to the 
Lorenz transformation of inertial frames. 

This circumstance gives us grounds to believe that the space-time and 
electromagnetic fields overlap in a gauge transformation theory. One may 
expect that these two fields separate at the ultrarelativistic limit, as long as 
V-+ c(= 1) is the single instability associated with (68) and (69). 

8. The ultrarelativistic scenario: photon-graviton split 

As is well known, the Schrodinger equation describing the movement of a 
nonrelativistic spinless electron in an electromagnetic field, 

[(1/2m,)(-iV + eA)* - (i alat + e4)] Fe = 0 (73) 
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is left unchanged if one operates a gauge transformation on the electron 
wavefunction and on the field [l]: 

(744 

A I”+ Ap - a’“~ (e = 1) . Wb) 

We want to show that an identical picture can be developed for a particle of 
mass m submerged in a gravitational field. Following Einstein, a space-time 
wavefunction is to be attached to the particle: 

7)‘++m, (75) 

which may be expressed in the standard exponential form 

(76) 

where (Q)~ is an amplitude and pr is the phase four-vector. Consequently, the 
equation of motion [9] 

du,lds - ; aELgywu”uw = 0, (77) 

where u, is the four-velocity and g,, the metric tensor, would not be affected if 
one would replace the following items: 

The presence of the particle in the gravitational field is expected to produce a 
small perturbation of the latter. Therefore, a weak fluctuation of the space- 
time geometry is to be written as 

g:, = g,, + @“cd . (79b) 

Taking into account (76), (79a) can be reduced at a form similar to (74a), 
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(79b) leads to a first order variation of the metric tensor given by [9] 

which is analogous with (74b). 
Because we are operating in a non-Euclidian geometry, the weak fluctua- 

tions of the space-time have to be considered as covariant perturbations. Thus, 
the simple derivatives in (81) are to be replaced by the covariant ones whose 
iterations do not alter the gauge invariance of the theory. 

Since (77) originates in cancelling out the covariant derivative of the 
four-velocity [9, lo], 

DuP=O, (82) 

it is now obvious that a covariant perturbation of (82) induced by (80) would 
not change its form, i.e. 

D(uP + 6~“) = 0, 

(83) 
D(W) = 0, 

or 

D(Sr.P) = d(6z.P) - @P) = 0, (84) 

where 6uP are the small fluctuations of the four-velocity. 
Let us investigate now a further development of our approach to the 

Standard Model. 
As long as the electromagnetic and gravitational fields seem to have a unique 

background originated in the gauge transformation, it makes sense to reveal a 
unique formula for the covariant derivative related to these fields. 

For an electrically charged particle Q submerged in an electromagnetic field 
A’ the covariant derivative is [l] 

D”=a”-iQA”. (85) 

Consider an arbitrary four-vector V“ and recall its covariant derivative for a 
gravitational field: 

DV’” = (dwV” + r;wV”) dx” , (86) 

where rt”, are the Christoffel symbols, 



ldxwl = 1 , (87) 
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For the sake of simplicity let us set 

and make the transposition [9] 

V” = I%?; ) 

where SL is the Kronecker symbol. (86) becomes 

(88) 

DVP = (am + ;S;g”“T,,,,)V” , (89) 

where 

r E,YW = a,&, + ~,&lO - ~,g,OJ . (90) 

Here 8: and gfi”” are constants with respect to the covariant differentiation [9] 
and therefore they can be compared to the electrical charge in (85). Notice also 

that Lo is written in the same form as the tensor of the electromagnetic field: 

Fpy = d&A,, - d,A, . (91) 

The treatment outlined above suggests a physical interpretation of the weak 
isospin as well as a definition for the component Wz of the SU(2) weak triplet 
(W’, W”). To achieve this, let us analyze the second term of the covariant 
derivative expressed in the Standard Model as [l] 

T, = -iig,YB, . (92) 

The massive bosonic field B, is a linear superposition of the electromagnetic 
field Ap and of WE, 

B, = v1+ K&k2)YL12 A, + (gJg,)Y,W; = c,A. + cww;, (93) 

such that (92) becomes 

T2 = -ig,( Q - T,)(c,A, + c,Wz) . (94) 

In an orthogonal representation, we can conveniently cancel out some compo- 
nents of the scalar product, 

QW;=T,A,=O, (95) 
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and (94) reduces to 

T2 = -ig,c,QA. + ig,c,YT,Wz = TE + TG . (96) 

Since the first term is an electromagnetic contribution (according to (85)), the 
second term may be assigned to a gravitational one. Given the orthogonality 
condition, the gravitational component becomes 

(97) 

A comparison of (97) with the second term of (89) reveals the following 
similitudes: 

(98) 

This circumstance indicates that the isospin and the W particles are intimately 
connected with the gravitational field. 
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Overview and motivation. – Quantum field theory
(QFT) is a mature conceptual framework whose predic-
tive power has been consistently proven in both high-
energy physics and condensed-matter phenomena [1–3].
From a historical perspective, QFT represents a successful
synthesis of quantum mechanics and special relativity and
consists of several models. Among these, gauge theories
play a leading role. The standard model (SM) is a subset
of QFT whose gauge group structure includes the electro-
weak and strong interactions of all known elementary
particles. SM is a robust theoretical framework; however,
it contains some 20 adjustable parameters whose physical
origin is presently unknown and whose numerical values
are exclusively fixed by experiments.
Non-Abelian gauge theories are essentially non-

linear field models. Quantizing this class of models is a
non-trivial effort and raises a series of theoretical chal-
lenges [4–6]. For example, no complete quantum version of
classical gravity exists. Quantum chromodynamics (QCD)
is considered a reliable field theory at short distances but
because its coupling constant becomes large in the infrared
sector, standard perturbative techniques do not apply. At
present, there is no universal prescription for deriving and
handling closed-form solutions of QCD field equations.
This is in manifest contrast with quantum electrodynam-
ics (QED) and the electroweak theory, where perturbative
methods are applicable and analytic results possible. In
general, dealing with closed-form solutions of field theories

(a)E-mail: ervingoldfain@gmail.com

is seldom a practical alternative. For example, Heisen-
berg’s non-perturbative quantization procedure [7,8] or
Schwinger-Dyson formalism [9] lead to an infinite set of
coupled differential equations which connect all orders of
Green’s functions. This system does not have analytic and
uniquely determined solutions. In these instances, one
seeks plausible assumptions that simplify the equations or
employs suitable numerical techniques for approximation.
In its traditional form, one frequently cited shortcoming

of QFT is its inherent limitation in dealing with the
effect of highly unstable fluctuations or with a dynamics
regime that is driven far away from equilibrium [10–12]. In
general, pattern formation is possible in out-of-equilibrium
physical systems that are open and nonlinear [13–15].
Within a closed system patterns may only survive as a
transient and die out as a result of the relaxation towards
equilibrium. It is for this reason that traditional QFT,
with few notable exceptions, is largely unable to properly
detect and characterize pattern formation. Recent years
have shown that pattern formation is relevant to a wealth
of applications ranging from reaction-diffusion processes,
nonlinear optics, nanostructures and fluid mechanics to
hot plasma, traffic models, epidemic spreading, transport
in heterogeneous media and neural networks. [13,16,17]
Understanding non-equilibrium phenomena and pattern

formation is still in its infancy. Progress in this field has
benefited from tools that have been recently devel-
oped for nonlinear dynamics, bifurcation and stability
theory [13,15,18–22]. Our goal here is to explore the far-
from-equilibrium sector of field theory using some of these
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newly developed methods. The underlying motivation
is that nonlinear dynamics brings novel insights and a
practical alternative for the analysis of field equations.
The paper is organized as follows: working at a classi-

cal level, we start from a non-equilibrium “toy” model
containing an Abelian gauge field coupled to a mass-
less scalar field. The concept of universality and the
emergence of the complex Ginzburg-Landau equation
(CGLE) are discussed in the next section. Mass genera-
tion through period-doubling bifurcations of CGLE and
the link between CGLE and the generalized exclusion
statistics (GES) follow from these premises. Summary and
concluding remarks are detailed in the last section.
Our contribution needs to be exclusively regarded as a

preliminary research on the topic. It is neither fully rigor-
ous nor comprehensive. We wish to convey a new qualita-
tive view rather than an in-depth analysis of phenomena.
Independent studies are required to confirm, expand or
refute these tentative findings.

A “toy” model in non-equilibrium field theory.
– As mentioned earlier, nonlinear field theories amount
to a large set of coupled differential equations that are
difficult to solve or manage through numerical approxi-
mations. The universal nature of nonlinear dynamics near
the threshold of the primary instability (see, e.g., [16])
suggests a shortcut route. One can start from a plausible
“toy” model and generalize results to more realistic theo-
ries. One example of such a “toy” model of classical field
theory describes an Abelian gauge field aµ(x, t) in inter-
action with a complex massless scalar field ϕ=ϕ1+ iϕ2 =
ϕ(x, t). The Lagrangian density reads [23]

L =−
1

4
FµνF

µν + |Dµϕ|
2
. (1)

Here, µ, ν = 0, 1, 2, 3 denote the space-time index, x=
(x1, x2, x3) the spatial coordinate, F

µν the gauge field
tensor, e the coupling constant and

Dµ = ∂µ+ ieaµ (2)

the operator of covariant differentiation. If we take
ϕ1≫ϕ2 for simplicity, field equations derived from (1)
are given by

Dµ(Dµϕ) = 0,

∂νFµν = 2e
2aµϕ

2.
(3)

Developing (3) yields

�ϕ=−ie(ϕ∂µaµ+ aµ∂
µϕ− aµ∂µϕ)− e

2aµaµϕ,
�aµ = ∂

ν∂µaν − 2e
2ϕ2aµ,

(4)

where �= ∂2/∂t2−∇2 is the d’Alembert operator. To
further streamline the derivation and highlight the basic
argument, we proceed by assuming that the gauge field
satisfies

∂µai = 0 for i= 1, 2, 3. (5)

If a0 denotes the temporal component of the gauge field,
the system (4) can be brought to the generic form of a
coupled system of partial differential equations,

∂0ϕ= η,

∂0η= f(η, ϕ, a0, ξ,∇η, . . .),

∂0a0 = ξ,

∂0ξ = g(η, ϕ, a0, ξ,∇η, . . .),

(6)

in which f(. . .) and g(. . .) are time-evolution functions
and ∂0 = ∂/∂t. (6) may be presented in vector form as

∂0u=U(u,∇u, . . .), (7)

where u= (η, ϕ, ξ, a0). We next posit that transition to
non-equilibrium in (7) is controlled by a small exter-
nal parameter ε≪ 1. This parameter is continuously
adjustable and measures the departure from equilibrium
(εc = 0). Accordingly, (7) becomes

∂0u=U(u,∇u, . . . , ε). (8)

The physical content of ε depends on the context of the
problem at hand. In open systems ε encodes the combined
effect of environmental and internal fluctuations [24].
Critical behavior in continuous dimension identifies ε with
the Wilson-Fisher parameter of the regularization
program (ε= 4− d) [25,26]. In models involving frac-
tional dynamics, ε characterizes the range of non-
local interactions in space or the extent of temporal
memory [22,27–29].

Universality and CGLE. – Non-equilibrium
processes such as (8) display remarkable universality.
Regardless of the specific application, macroscopic
patterns that develop near the threshold of a dynamic
instability are robust and largely insensitive to micro-
scopic fluctuations [13,16,17].
Since one is familiar with the language of harmonic

oscillations, we are interested in the simplest bifurcation in
the dynamics of u(x, t) that creates oscillatory behavior.
This is known as a Hopf bifurcation and represents the
simplest transition that leads from a focus point to a
periodic behavior. As the bifurcation point is approached,
the focus point becomes unstable and gives rise to a
harmonic limit cycle. CGLE is a universal model that
holds for all pattern-forming systems undergoing a Hopf
bifurcation [13,16]. The theory of the reduction to CGLE
from generic systems of autonomous nonlinear equations
such as (8) has been developed by several authors. The
derivation of CGLE for a (1+1)-dimensional system starts
from the ansatz

u(x, t) = u0+A(x̃, t̃) exp[i(kcx−Ωct]u1+c.c., (9)

where x̃, t̃ represent slow variables and kc, Ωc are critical
values in wave number and frequency spaces. Replacing
in (8), dropping the tildes and expanding in power series

11001-p2



Bifurcations and pattern formation in particle physics: An introductory study

of the small parameter ε̃= ε− εc leads to CGLE in its
standard form

∂tA=A+(1+ ic1)∇
2A− (1− ic3) |A|

2
A. (10)

Here,
A(x, t) = ρ(x, t) exp[−iΦ(x, t)] (11)

is a complex-valued amplitude defining the slow modula-
tion in space and time of the underlying periodic pattern.
The real parameters c1, c3 denote the linear and nonlinear
dispersion parameters, respectively. The limit c1, c3→ 0
corresponds to the real Ginzburg-Landau equation,
whereas c−11 , c

−1
3 → 0 recovers the nonlinear Schrödinger

equation.

Higgs-free generations of particle masses. –
Among the simplest coherent structures generated by
CGLE are plane-wave solutions having the form [13,16]

A(x, t) =A0 exp[−i(qx+mt)]+ c.c.,

A0 =
√

1− q2.
(12)

The frequency m satisfies the dispersion equation

mq = c1q
2− c3(1− q

2) (13)

and q ∈ [−1, 1] represents the phase gradient of the
complex amplitude (12),

q=−∇ |Φ| (14)

Linear stability analysis of (12) reveals that plane waves
having a wave number larger than the so-called Eckhaus
threshold

qE =

√

1− c1c3
2(1+ c23)+ 1− c1c3

(15)

are unstable with respect to the long-wavelength modu-
lation. In particular, a vanishing Eckhaus threshold
leads to the Benjamin-Feir-Newell (BFN) instability
criterion (A.1)

c1c3 = 1. (16)

The dispersion equation (13) has two complementary
limits: q=±1 (A0 = 0) and q= 0 (A0 =±1). Arguments
presented in appendix A suggest a natural identification
of these two modes with fermion and electroweak gauge
boson fields, respectively. Equation (14) implies that
fermions have a non-vanishing and uniform phase gradi-
ent ∇Φ �= 0, whereas gauge bosons have a uniform phase
and a vanishing phase gradient ∇Φ= 0. Although we
have started from a massless model, from (13) and (16)
it follows that both these modes acquire non-vanishing
masses. In non-dimensional form and near the BFN
instability, the two sets of masses are

m± = c1,

m0 =−c3,
(17a)

such that
m± = |m0|

−1
. (17b)

Table 1: Actual vs. predicted mass scaling ratios for δ̄= 3.9.

Parameter ratio Behavior Actual Predicted

mu/mc δ̄−4 3.365× 10−3 4.323× 10−3

mc/mt δ̄−4 3.689× 10−3 4.323× 10−3

md/ms δ̄−2 0.052 0.066
ms/mb δ̄−2 0.028 0.066
me/mµ δ̄−4 4.745× 10−3 4.323× 10−3

mµ/mτ δ̄−2 0.061 0.066

MW /MZ
(

1− δ̄−1
)1/2

0.8823 0.8623

It is known that plane-wave solutions consist of both
positive and negative frequencies. Because mass is positive
definite, in what follows we are limiting the discussion to
the cases c1 > 0 and c3 < 0.

The Feigenbaum-Sharkovskii-Magnitskii (FSM)
paradigm. – The FSM paradigm of universal transition
to chaos in nonlinear dissipative systems is briefly detailed
in appendix B. Extensive numerical data [20,21] show that
both parameters of linear and nonlinear dispersion c1, c3
of (17a) are distributed in a geometric progression, that is

c1,n = c1,∞+K1δ
−n
,

c3,n = c3,∞+K2σ
−n,

(18)

where δ̄, σ̄ are scaling constants and n= 1, 2, 3 . . . repre-
sents the number of tori accumulated through bifurca-
tions. Since K1,K2, c1,∞ and c3,∞ are independent of n,
they can be both absorbed into a redefinition of masses.
We have, accordingly,

m∗n =
1

K1
(m±,n− c1,∞),

Mn =
1

K2
(m0,n− c3,∞).

(19)

The ratios of two arbitrary masses in the bifurcation
sequence take the form

m∗n
m∗n+p

= δ
p
,

Mn
Mn+p

= σp,

(20)

in which p= 2k, k= 1, 2, 3 . . .. Based on (17) it can be
concluded that, near the BFN instability, the two scaling
constants are linked to each other.
Analysis of the Renormalization Group flow for the

real Ginzburg-Landau equation leads to the following
relationship between δ̄ and σ̄ [28]:

1−

(

M1
M2

)2

= 1−
(

σ1
)2
≈
1

δ
, (21)

where M1 =MW , M2 =MZ are vector boson masses.
Table 1 shows a side-by-side comparison between predic-
tions inferred from (20) and experiment, where δ̄= 3.9
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Table 2: Actual values of elementary particle masses.

Parameter Value Units
mu 2.12 MeV
md 4.22 MeV
ms 80.90 MeV
mc 630 MeV
mb 2847 MeV
mt 170,800 MeV
MW 80.46 GeV
MZ 91.19 GeV

represents the numerical value of the scaling constant that
best fits laboratory data [30]. Actual values of particle
masses, computed at the reference scale given by the mass
of the top quark [31], are listed in table 2. Note that the
choice of the mass scale is completely arbitrary since (20)
involves ratios of consecutive masses.

CGLE and generalized exclusion statistics. –
Dispersion relation (13) indicates that plane-wave solu-
tions of CGLE interpolate between gauge boson states
(q= 0) and fermion states (q=±1). From (13) and (14) it
follows that the spin associated with an arbitrary mixed
state is given by1

σ= 1−
(∇Φ)2

2
. (22)

From this standpoint, CGLE is remarkably similar to
the framework describing quantum fractional statistics
in condensed-matter physics. In what follows we briefly
discuss this analogy. The generalized exclusion statistics
(GES) is motivated by the properties of quasi-particles
occurring in the fractional quantum Hall effect [32,33].
Consider a thermodynamic ensemble of N identical parti-
cles. Let d represent the dimension of the one-particle
Hilbert space obtained by fixing the coordinates of the
remaining N − 1 particles. The statistics of a particle is
defined by the so-called Haldane’s parameter g,

g=−
∂d(N)

∂N
≈−
d(N +∆N)− d(N)

∆N
. (23)

Because any given state can be populated by any number
of bosons, d(N +∆N) = d(N) and hence g= 0. By
contrast, the Pauli exclusion principle restricts fermions
to g= 1. Quasi-particles with mixed statistics are char-
acterized by an intermediate value of g and are said to
satisfy a generalized exclusion principle. In this case, it
can be shown that thermodynamic quantities such energy,
heat capacity or entropy can be expressed in factorized
form. In particular, the energy of the quasi-particle
ensemble is given by

E(g) = gE(1)+ (1− g)E(0). (24)

1Strictly speaking, spin is a concept that is valid only in a
quantum or semi-quantum context. Since our analysis is carried out
at the classical level, (22) is meant to simply denote a numerical
attribute of plane waves dependent on the wave number q.

Table 3: Comparison between CGLE and GES.

CGLE GES

q=−
∂|Φ|

∂x
g=−

∂d

∂N

mq = c1q
2− c3(1− q

2) Eg = gE(1)+ (1− g)E(0)

An example of this type of objects is offered by anyons,
quasi-particles that exist in two dimensions and carry
fractional charges. When two particles of a system of
bosons are exchanged, the phase of the system remains
unchanged, whereas for a system of fermions it changes by
exactly π. Exchanging two anyons results in a phase factor
that falls between zero and π. Anyons play a key role in
the fractional quantum Hall effect and high-temperature
superconductivity [32,33].
A short comparison between plane-wave solutions of

CGLE and GES is included in table 3.

Summary and conclusions. – This brief report has
been motivated by recent advances in nonlinear dynamics
and complexity theory. Exploiting the universal theory of
transition to chaos in nonlinear dissipative systems, we
have found that:

a) particles acquire mass as plane-wave solutions of
CGLE, without reference to the hypothetical Higgs
scalar or to a particular symmetry breaking mecha-
nism. As of today, the reality of the Higgs doublet and
nature of electroweak symmetry breaking are issues
that remain unsettled.

b) Starting from a basic model of Abelian gauge bosons
in interaction with scalar fields, CGLE leads to a
natural separation of heavy non-relativistic modes
(q= 0) from light relativistic modes of maximal group
velocity (q=±1). The most straightforward interpre-
tation of this result is that the first group of modes
corresponds to electroweak gauge bosons and the
second group to fermions.

c) A direct connection may be set up between GES
in condensed-matter physics and the dispersion rela-
tion (13) corresponding to q �= 1. Although different
in methodology and content, both GES and CGLE
point out that fractional quantum statistics and non-
equilibrium field theory enable a dynamic unification
of gauge bosons and fermions as particles with arbi-
trary spin. This is in contrast with super-symmetry
and related models (see, e.g., [34]) which are based
on extended symmetry groups and pay virtually no
attention to nonlinear dynamics of underlying fields.

We close this section with two short remarks: 1) the
approach developed here is based on classical field theory.
Needless to say, a realistic model cannot ignore the
quantum nature of fields evolving in four-dimensional

11001-p4



Bifurcations and pattern formation in particle physics: An introductory study

space-time. However, as previously pointed out, future
results are not expected to substantially deviate from
these initial findings because of universality arguments
related to nonlinear dynamics of (8) and CGLE (see,
e.g., [13,18,20]); 2) although our approach bypasses the
conventional Higgs mechanism, it still remains compatible
with it. The standard model asserts that particle masses
are generated through electroweak symmetry breaking and
are attributed to the Yukawa couplings of the fermions
(gf ) to the Higgs condensate (vH0). The ratio of two
arbitrary fermion masses in the spectrum is given by

mf
mf ′
=
gf (vH0)

gf ′(vH0)
=
gf
gf ′
. (25)

It follows that the mass hierarchy shown in table 1 may
be simply interpreted as reflecting the hierarchy of the
corresponding Yukawa couplings.
Future research may be focused on a deeper under-

standing of pattern formation and its ramifications in the
realm of SM and beyond. Of key interest is the emer-
gence of novel states in the TeV range of particle physics.
This probing energy will become accessible in the near
future at the large hadron collider and other accelerator
sites [35].

Appendix A. – The two dispersion parame-
ters of CGLE are subject to the following dynamic
constraints [13,16,17]:

a) the Benjamin-Feir-Newell (BFN) criterion states that
stability becomes borderline for

c1c3 = 1; (A.1)

b) using (13), the group velocity of the plane-wave
solutions is given by

vg = 2q(c1+ c3). (A.2)

Compliance with relativity bounds (A.2) to a constant
that represents the normalized value of light speed in
vacuo. It is clear that q= 0 represents a slow mode
(massive gauge boson), while q=±1 describes the fastest
mode (relativistic fermions). Masses associated with these
modes are supplied by (17). From the BFN criterion it
follows that the borderline value of the normalization
constant Q=

vg,max
2 can be determined from

c1 =
Q±
√

Q2− 4

2
⇒Q� 2,

c3 =
1

c1
.

(A.3)

Equations (A.1) and (A.2) imply that, close to the border
of BFN instability, gauge boson and fermion masses
scale as dual entities. This finding is consistent with the
behavior of the last entry in table 1.

Appendix B. – Consider the following boundary
value problem for CGLE in 1+1 space-time dimen-
sions [20,21,36]:

∂tA=A+(1+ ic1)∂
2
xA− (1− ic3) |A|

2
A,

∂xA(0, t) = ∂xA(L, t) = 0, A(x, 0) =A0(x),

0� x�L, 0� t�∞.

(B.1)

This model can be reduced to a three-dimensional system
of nonlinear ordinary differential equations with the help
of the Galerkin few-modes approximation:

A(x, t)≈
√

ξ(t) exp[iθ1(t)]+
√

η(t) exp[iθ2(t)] cos
(π

L
x
)

(B.2)

in which

∂tξ = f1(ξ, η, θ, c1, c3, L),

∂tη= f2(ξ, η, θ, c1, c3, L),

∂tθ= f3(ξ, η, θ, c1, c2, L)

(B.3)

with θ(t) = θ2(t)− θ1(t). It can be shown that the transi-
tion to chaos in (B.3) occurs through a sequential cascade
of bifurcations in three separate stages. This cascade starts
with the Feigenbaum scenario of period-doubling bifurca-
tions of stable cycles, followed by the Sharkovskii subhar-
monic cascade and ending with the Magnitskii cascade of
stable homoclinic cycles.
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Abstract

Complex quantum field theory (abbreviated c-QFT) is introduced in this paper as an alternative framework for the
description of physics beyond the energy range of the standard model. The mathematics of c-QFT is based on fractal
differential operators that generalize the momentum operators of conventional quantum field theory (QFT). The under-
lying premise of our approach is that c-QFT contains the right analytical tools for dealing with the asymptotic regime of
QFT. Canonical quantization of c-QFT leads to the following findings: (i) the Fock space of c-QFT includes fractional
numbers of particles and antiparticles per state, (ii) c-QFT represents a generalization of topological field theory and (iii)
classical limit of c-QFT is equivalent to field theory in curved space–time. The first finding provides a field-theoretic
motivation for the transfinite discretization approach of El-Naschie�s e(1) theory. The second and third findings suggest
the dynamic unification of boson and fermion fields as particles with fractional spin, as well as the close connection
between spin and space-time topology beyond the conventional physics of the standard model.
� 2005 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

Quantum field theory (QFT) is an approximate description of particle phenomena occurring in an energy range
below few hundred GeV. For this reason, QFT is considered an effective field theory which deliberately ignores the sub-
structure and the degrees of freedom observable above this upper bound [1]. A number of recent studies have suggested,
from a variety of standpoints, that physics in the TeV regime of QFT may be a manifestation of complex dynamics [2–
9,11,16–19]. For example, it has been argued that the onset of large and persistent vacuum fluctuations, along with
strong-gravity effects emerging from the short-distance behavior of QFT, warrant the passage from the standard tools
of classical calculus to fractional calculus [16]. In general, use of conventional differential operators rests on the tacit
assumption that a clear separation exists between the macroscopic and the microscopic levels of physical description.
Implicit in this assumption is the condition that dynamical processes on the microscopic scale are stable. If this condi-
tion fails to be true, dynamical instabilities can develop on arbitrarily long time-scales and the macroscopic description
of phenomena in terms of ordinary differential operators breaks down [13,15]. Such a scenario may be typical for
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physics in the TeV regime where far-from equilibrium statistical processes are expected to dominate. Let us briefly
elaborate on this point with the help of an idealized quantum-mechanical experiment. Consider an isolated two-state
quantum system whose state vector jwi at time t = 0 is given by

jwi ¼ c0j0i þ c1j1i ð1Þ
where j0i and j1i denote two orthogonal states and c0, c1 are complex numbers. Assume that the quantum vacuum,
acting as source of large and steady fluctuations, may be modeled as a two-state reservoir with vectors jv0i and jv1i.
Bring the quantum vacuum in contact with the system at some instant t0 > 0 and maintain the contact for an interval
tINT > t0. The coupling of the two objects through unitary evolution leads to a time-dependent state

jwðtÞi ¼ c0j0i � jv0i þ c1j1i � jv1i ð2Þ
where � stands for the tensor product and tINT > t > t0. It is seen that the system and vacuum become entangled on a
time-scale commensurate with tINT and one can no longer treat (1) as describing an object with a well-defined quantum
identity. In contrast to the low-energy regime of quantum theory, the high-energy dynamics of the vacuum is charac-
terized in general by a large number of time-scales that are not reducible to a single average through coarse-graining. It
follows that the ensemble system + vacuum evolves on multiple scales. This line of reasoning reproduces, in essence, the
statistical physics argument for replacing ordinary derivatives and integrals with fractal operators [13].

To the best of our knowledge, this work represents the first attempt to build a field theory on the basis of fractional
differential and integral operators (c-QFT). Its main goal is to develop canonical quantization of c-QFT and evaluate its
ramifications in connection with future extensions of QFT. We caution that our contribution is meant to serve as an
informal introduction and not as a rigorous and comprehensive treatment of the topic.

The paper is organized in the following way: Sections 3 and 4 introduce canonical quantization for c-QFT of free
scalar and Dirac fields. The link between Chern–Simons field theory and c-QFT is examined in Section 5. Section 6 is
devoted to a brief discussion on the dual aspect of c-QFT and general relativity. Last section presents a short summary
of results and future prospects.

2. Notation, assumptions and conventions

We introduce here the main notations and assumptions that underlie the remainder of the paper

(i) The summation convention is applied on repeated upper and lower indices and Planck�s constant is set to �h = 1.
(ii) Motivated by the growing evidence for complexity in field theory, our focus is the behavior of fractional dynam-

ical systems [10]. These systems are characterized by non-integer powers of generalized coordinates and momenta

qa ¼: jqja; pa ¼: jpja ð3Þ

in which a > 0. As stated, we study the dynamics of free fractional scalar and Dirac fields. To avoid cluttering the
notation, the corresponding field variables are respectively designated as

u ¼: qa; w ¼: qa ð4Þ

(iii) The hat symbol ‘‘^’’ is used to indicate operators.
(iv) Analysis is limited to real or complex functions of the dimensionless field variable qP 0 for which fractional

derivatives and integrals exist. We adopt hereafter the regularized expression for fractional derivative [20,21]

Da½f ðqÞ� ¼: oa½f ðqÞ�
oqa

¼: 1

Cð1 � aÞ

Z q

�1

of ðnÞ
on

dn
ðq� nÞa ð5Þ

where 0 < a < 1. The fractional momentum operator is introduced in Appendix A by analogy with conventional
formulation of quantum mechanics. It may be shown that fractional momentum is linear and hermitean. The
latter property follows from an extended definition of the conjugate operator, as detailed in (A7)–(A10).

(v) The generalized Lagrangian for a classical fractional system depending on n fields, their fractional derivatives
of orders xl and n locally defined exponents al(x) (l = 1,2, . . . ,n) is defined by

La1ðxÞ;a2ðxÞ...;anðxÞ
G ¼: LGðqa1ðxÞ

1 ; qa2ðxÞ
2 ; . . . ; qanðxÞ

n ;Dx1qa1ðxÞ
1 ;Dx2qa2ðxÞ

2 ; . . . ;DxnqanðxÞ
n ; tÞ ð6Þ

(vi) The commutator and anti-commutator for any pair of arbitrary operators (f̂ ; ĝ) are, respectively

½f̂ ; ĝ� ¼: f̂ ĝ � ĝf̂ ð7Þ
ff̂ ; ĝg ¼: f̂ ĝ þ ĝf̂ ð8Þ
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(vii) State vectors and inner products are formulated using Dirac notation.
(viii) The vacuum state is considered empty and is labeled with the zero-particle ketj0i.
(ix) Dynamical processes described by c-QFT are Markovian and, as such, have no time memory.
(x) Greek letters l, m, r = 0, 1, 2, 3 denote space–time indices whereas roman letters i, j, k = 1, 2, 3 label the set of

three spatial coordinates.

3. Scalar bosons in c-QFT

The classical Lagrangian for the free scalar field theory in 3 + 1 dimensions reads [14,22]

L ¼ oluolu � m2u2 ð9Þ

and leads to the following expression for the field momentum:

p ¼ oL

o ou
ot

� � ¼ ou
ot

ð10Þ

It is known that the standard technique of canonical quantization promotes a classical field theory to a quantum
field theory by converting the field and momentum variables into operators. To gain full physical insight with minimal
complications in formalism, we work below in 0 + 1 dimensions. Define the field and momentum operators as

u ! û¼: u

p ! p̂a¼: � i
o

a

ojuja � �iDa
ð11Þ

Without loss of generality, we set m = 1 in (9). The Hamiltonian becomes

H ! bH a ¼ � 1

2
D2a þ 1

2
u2 ¼ 1

2
p̂2a þ u2
� �

ð12Þ

The state of the field in the Schrödinger representation is described by a complex-valued wavefunction W(u) = hujWi
whose conjugate-square is the probability density for u. This wavefunction evolves according to the time-dependent
Schrödinger equation

iotWðuÞ ¼ bH a
WðuÞ ð13Þ

The commutation relations corresponding to (11) may be written as (per Appendix B)

½u;u� ¼ 0

½p̂a; p̂a� ¼: ½Da;Da� ¼ 0

½û; p̂a� ¼ iap̂ða�1Þ
ð14Þ

By analogy with the standard treatment of harmonic oscillator in quantum mechanics, it is convenient to work with the
destruction and creation operators defined through [14,23]

âa ¼: 1ffiffiffi
2

p ½û þ ip̂a�

âþa ¼: 1ffiffiffi
2

p ½û � ip̂a�
ð15Þ

Straightforward algebra shows that these operators satisfy the following commutation rules:

½â; â� ¼ ½âþa; âþa� ¼ 0

½âþa; âa� ¼ i½û; p̂a� ¼ �ap̂ða�1Þ ð16Þ

The second relation in (16) leads to

bH a ¼ âþaâa þ 1

2
ap̂ða�1Þ ð17Þ

In the limit a ! 1 we recover the quantum mechanics of the harmonic oscillator, namely

bH ¼ âþâþ 1

2
ð18Þ
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Next, consider the commutator ½bN a
; âþ�, where bN ¼: âþâ designates the number operator. We obtain

½bN a
; âþa� ¼ ap̂ða�1Þâþa ð19Þ

Thus

bN a
âþaj0i ¼ ðâþa bN a þ ½bN a

; âþa�Þj0i ¼ ap̂ða�1Þâþaj0i ð20Þ

The eigenvalue equation corresponding to the above relation has the form

Dða�1Þâþaj0i ¼ kða�1Þâþaj0i ¼ ik
a
âþaj0i ð21Þ

and it is solved in Appendix C. Under the most general circumstances, kn (n=1,2,...) form a set of real numbers that may
be cast in a fractional form. As a result, we are led to conclude that âþaj0i represents an eigenvector of the number
operator having fractional eigenvalues. Stated differently, the action of the creation operator âþa on the empty vacuum
is to produce a particle that carries a fractional quantum of energy. Following the general arguments of Section 1), we
may call these fractional excitations of the scalar field ‘‘complexons’’. According to Appendix C, since kn form a discrete
set of eigenvalues, it is appropriate to regard the complexon as a fractional particle with a discrete energy spectrum. We
close this section with the observation that, on account of (17) and (18), the term 1

2
ap̂ða�1Þ plays the role of a zero-point

operator. In contrast with conventional quantum theory, it is apparent that the dynamical contribution of the back-
ground vacuum in c-QFT amounts to more than a constant additive term to the Hamiltonian.1

4. Fermions in c-QFT

The classical Dirac equation describing free fermion fields in 3 + 1 dimension is [14,22]

ðiclol � mÞw ¼ 0 ð22Þ

where cl are 4 · 4 matrices given by

c0 ¼
1 0

0 �1

� �
ci ¼

0 ri

�ri 0

� �
ð23Þ

and w is a 4-component spinor which transforms under the spin 1/2 representation of the Lorentz group. The Dirac
equation may be derived from the Lagrangian

LD ¼ i

2
�wclðolwÞ � ðol

�wÞclw
� 	

� m�ww ð24Þ

in which the adjoint spinor is defined as

�w ¼: wþc0 ð25Þ

To simplify the formalism and capture the essentials of the argument, we choose to work again in 0 + 1 dimensions
and set m = 1. Let the spinor field be expanded in a basis containing the eigenstates of c0 that is

w ¼ wþjþi þ w�j�i ð26Þ

where

jþi ¼
1

0

0
@

1
A j�i ¼

0

1

0
@

1
A

hþj ¼ ð 1 0 Þ h�j ¼ ð 0 1 Þ

ð27Þ

The conjugate momentum of the spinor field is

P ¼ oLD

o ow
ot

� � ¼ iwþ ð28Þ

1 It is tempting to speculate that the emergence of zero-point operator as a dynamical generator of vacuum structure might account
for the existence of dark matter in the universe. As it is known, the source and physical attributes of dark matter are currently
unanswered questions in particle physics and cosmology.
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Consider now the coordinate Schrödinger representation for Dirac fields, whereby an arbitrary state jUi is represented
by the wavefunction U(w) = hwjUi. By analogy with the previous section, we cast Dirac field theory in the operator
language. Let us take the state jwi to be an eigenstate of the field operator ŵ with eigenvalue w

ŵjwi ¼ wjwi ð29Þ

The field conjugate momentum is then

P̂ ¼ iŵ
þ ¼ i

o

ow
ð30Þ

Creation and destruction operators are introduced as follows [14]:

ŵ ¼ b̂jþi þ ĉþj�i

ŵ
þ ¼ b̂

þhþj þ ĉh�j
�̂w ¼ b̂

þhþj � ĉh�j

ð31Þ

Here, b̂ and ĉ are the fermion and antifermion destruction operators, whereas b̂
þ

and ĉþ denote the fermion and anti-
fermion creation operators. It is known that, to ensure that the total fermion energy is positive-definite, Dirac field
theory is formulated using anticommutators rather than commutators [14,22]. The momentum anti-commutator is
given by

fŵ; P̂g � fŵ; iŵþg ¼ i½fb̂; b̂þg þ fĉ; ĉþg � 1� ð32Þ

Here, according to (8)

fŵ; P̂g ¼: ŵP̂ þ P̂ŵ ð33Þ

The Dirac Hamiltonian assumes the form

bHD ¼ �̂wŵ ¼ ðb̂þb̂þ ĉþĉÞ ð34Þ

Moreover, a new operator may be introduced in the theory as being proportional to the difference of the number of
fermions and number of antifermions. This is known as the charge operator and is represented by

bQ ¼: e �̂wc0ŵ ¼ eðb̂þb̂� ĉþĉÞ ð35Þ

where e is the electron charge. Proceeding in a way similar to the previous section, the conjugate momentum for Dirac
c-QFT may be defined as

P̂
a ¼ iŵ

þa ¼: i
oa

ojwja ¼ iDa ð36Þ

By analogy with (14), the corresponding momentum anti-commutator reads

fŵ; P̂ag ¼ iaP̂
ða�1Þ ð37Þ

Assuming that fermions and antifermions contribute equally to (32), we derive

fb̂a
; b̂

þag ¼ fĉa; ĉþag ¼ 1

2
a bPða�1Þ

þ 1
h i

ð38Þ

A logical way to proceed from here is by writing down the anti-commutation relations involving the number and cre-
ation operators for fermions and anti-fermions. Retracing the sequence of steps (19)–(21), we arrive at the equation

Dða�1Þb̂
þaj0i ¼ gða�1Þb̂

þaj0i ð39Þ

whose eigenvalues g(a�1) form a set of positive and fractional numbers. Considering the same arguments that lead to
(21), fermion field excitations generated by g(a�1) may be also interpreted as ‘‘complexons’’. Moreover, it follows from
(35) and (38) that bQ generates fractional fermion charges. The emergence of complexons and fractional Dirac charges
may be seen as a dynamic manifestation of the high-energy regime that do not have a counterpart in conventional
QFT.
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5. c-QFT as extended Chern–Simons theory

The emergence of fractional quanta and fractional charges in the last two sections suggests a deeper physical con-
nection between c-QFT and Chern–Simons field theory. As it is known, the Chern–Simons theory may be associated
with the occurrence of quasi-particles with fractional spin known as anyons [12,22]. The theory asserts that anyons
experience long-range phase interaction mediated by a gauge potential al. The Chern–Simons action for the free theory
defined on a closed 2 + 1 space–time manifold M has the form

bS �
Z
M

elmkâl omâk d3x ð40Þ

in which l, m, k = 0, i; (i = 1,2) and elmk represents the totally antisymmetric symbol [22]. A remarkable attribute of
(40) is that it is invariant under general coordinate transformations in which the field components change as

âlðxÞ ¼
ox0k

oxl
ba0 kðx0Þ ð41Þ

As a result, the Chern–Simons action (41) is independent of the geometric structure of the underlying space–time
manifold encoded in the metric tensor glm(x). It depends only on the topological content of M. It is for this reason
that (40) is said to describe a topological field theory [22]. Using the language of differential forms, the Chern–Simons
term can be expressed as

elmkâlomâk ! eâdâ ð42Þ

In a formulation involving fractal operators and up to several multiplication constants, (42) may be generalized to

âdâ ! Dd
x âD

g
x â ð43Þ

The action (40) is accordingly upgraded to

bS d;g
�

Z
M
Dd

x âD
g
x âd3x ð44Þ

Here, Dd
x and Dg

x are differential operators with respect to x and d, g are fractional exponents. We recover the con-
ventional Chern–Simons theory in the limit d = 0, g = 1. Under these circumstances, Chern–Simons theory may be
regarded as a subset of c-QFT. Taking d, g to be locally defined (d G d(x); g G g(x)) and viewing them as new
degrees of freedom, one may choose to constrain these exponents such as to guarantee invariance of (44) under general
coordinate transformations. A distinctive property of d(x), g(x) is that they are linearly related to the fractal dimension
of the manifold M and thus represent a measure of its underlying topology [13,16]. Following this line of reasoning, we
may establish a close link between topological aspects of the Chern–Simons field theory, on one hand, and c-QFT, on
the other.2

6. Classical limit of c-QFT and general relativity

Expanding on this viewpoint, we may argue that, under the most general circumstances, all exponents entering the
generalized Lagrangian (6) are not arbitrary inputs but dynamical parameters that may be fixed by any set of symmetry
requirements imposed on the generalized action

Sa1ðxÞ;a2ðxÞ;...;anðxÞ
G ¼:

Z
M
La1ðxÞ;a2ðxÞ...;anðxÞ
G d4x ð45Þ

In particular, the generalized action for free fermions may be made invariant with respect to local gauge transforma-
tions without adding gauge fields to the theory. Setting the right functional constraints on exponents rather than relying
on additional dynamical fields to satisfy local gauge symmetry is the key argument of [18].

Given the topological roots of exponent a and its dynamical role in the development of c-QFT, it is of interest to
explore how fractal attributes encoded by a may be mapped onto the underlying metric of M. To this end, consider
the Lagrangian of the classical scalar field theory (9) in four-dimensional space–time

2 In this context it is instructive to recall that the Chern–Simons model provides a theoretical framework for explaining the fractional
quantum Hall effect, a well known phenomenon in condensed matter physics [12,22].
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L ¼ ðou=otÞ2 �
X
k

ðou=oxkÞ2 � m2u2 ð46Þ

The generalized Lagrangian built from (46) assumes the form

La
G ¼ ðou=otÞ2 �

X
k

D2a
xk

u � m2u2 ð47Þ

An alternate expression for the fractional derivative Da
xk
u is [20]

Da
xk
uðxkÞ ¼

uð0Þx�a
k

Cð1 � aÞ þ
1

Cð1 � aÞ

Z xk

0

ðxk � nÞ�a ou
oxk

ðnÞdn ð48Þ

Let the coordinate of point nk (0 < nk 6 xk) be defined as an arbitrary fraction of the endpoint coordinate xk� 1, that
is, nkG sxk, with s 6 1. Assuming, for the sake of simplicity, that the first term in (48) is negligible in comparison with
the second term, we derive the following approximation

Da
xk
u

nk

s

� �
� ð1 � sÞ�a

s1�aCð1 � aÞ nð1�aÞ
k

ou
oxk

ðnkÞ ð49Þ

and

D2a
xk

uðnkÞ � ga
ikðnkÞ

ou
oxi

ðniÞ
� �

ou
oxk

ðnkÞ
� �

ð50Þ

Up to a product of multiplicative factors independent of nk, the metric ga
ikðnkÞ is given by

ga
ikðnkÞ � gikn

2ð1�aÞ
k ð51Þ

where gik is the Minkowski metric of special relativity.
On account of (50) and (51), we are led to conclude that the classical limit of c-QFT for free scalar bosons may be

formally interpreted as a classical field theory in curved space–time. It can be seen that (51) reduces to the metric of
special relativity when the fractal topology of space–time makes the transition to a smooth topology, i.e. in the classical
limit a ! 1. The equivalent metric (51) is subject to the constraint briefly discussed in Appendix D.

7. Concluding remarks

We have laid out the groundwork for complex-quantum field theory using the methodology of fractal differential
and integral operators. Our framework has been developed with emphasis on canonical quantization and has led to
the following conclusions: (i) the Fock space of c-QFT includes fractional numbers of particles and antiparticles per
state, (ii) c-QFT represents a generalization of topological field theory and (iii) classical limit of c-QFT is equivalent
to field theory in curved space–time. The first finding is rooted in the non-commutative nature of space–time in the
TeV regime and provides a field-theoretic justification for the transfinite discretization procedure of El Naschie�s
e(1) model. The second and third findings suggest the dynamic unification of boson and fermion fields as particles with
fractional spin, as well as the close connection between spin and topological attributes of space-time beyond the con-
ventional physics of the standard model.

Future research efforts may be directed towards developing the complexon algebra, understanding the connection
between fractional spin and c-QFT and formulating predictions that can be tracked and tested at the Large Hadron
Collider and next-generation accelerators. In particular, it is of great interest to explore if c-QFT gives us clues about
the particle content of dark matter and its relationship to the TeV physics.
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Appendix A

Fractional derivative of order 0 < a < 1 described by (5) may be alternatively expressed as a convolution, i.e.

Da
>f ðqÞ ¼

:
f ðqÞ � Kþ

a ðqÞ ðA1Þ
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where

Kþ
a ðqÞ ¼

: q�a

Cð1 � aÞ ðq > 0Þ ðA2Þ

Similarly we can introduce

Da
<f ðqÞ ¼

: f ðqÞ � K�
a ðqÞ ðA3Þ

with

K�
a ðqÞ ¼ Kþ

a ð�qÞ ¼: q�a

Cð1 � aÞ ðq < 0Þ ðA4Þ

Let

p̂awðqÞ ¼ �iDa
>wðqÞ ðA5Þ

stand for the fractional momentum operator working on the wavefunction w(q). In accordance with the standard
formalism of quantum mechanics, its average is given by

hp̂ai ¼:
Z 1

�1
w�ðqÞð�iDa

>ÞwðqÞdq ðA6Þ

To keep the notation simple, we omit throughout the text the subscript ‘‘>’’. Hence we set

Da
> � Da ðA7Þ

Fractional momentum is a linear operator since it satisfies

p̂aw1 ¼ w2

p̂aðw1 þ w2Þ ¼ p̂aw1 þ p̂aw2

Cp̂aw ¼ p̂aðCwÞ
ðA8Þ

where C is an arbitrary constant. The integration by parts formula [21]Z 1

�1
w�ðqÞð�iDa

>ÞwðqÞdq ¼
Z 1

�1
wðqÞð�iDa

<Þw
�ðqÞdq ðA9Þ

implies that the fractional momentum operator is hermitean if (and only if) we adopt the following definition

�iDa
< ¼: ð�iDa

>Þ
� ¼ iðDa

>Þ
� ðA10Þ

Appendix B. Derivation of the commutator ½û; p̂a� ¼ iap̂ða�1Þ

Start from (11) and the formal commutator definition

½û; p̂a�jui ¼ ð�iÞ½ûDajui � Daðû � juiÞ� ðB1Þ

and apply the generalized Leibniz rule [20]

Daðû � juiÞ ¼
X1
m¼0

a

m

� �
DmuDa�mjui ¼ uDajui þ

a

1

� �
Dða�1Þjui ðB2Þ

in which

a

m

� �
¼: Cða þ 1Þ

Cða þ 1 � mÞCð1 þ mÞ ðB3Þ

Therefore

a

1

� �
¼ Cða þ 1Þ

CðaÞ ¼ a ðB4Þ

From (B1)–(B4) we derive

½û; p̂a� ¼ iap̂ða�1Þ ðB5Þ
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Appendix C. Fractional eigenvalue equation p̂ða�1Þâþaj0i ¼ k
a
âþaj0i

Consider

Dða�1Þâþaj0i ¼ kða�1Þâþaj0i ðC1Þ

where

kða�1Þ ¼ ik
a

ðC2Þ

Here, we have employed the notation

âþa � âþaðuÞ ðC3Þ

The general solution of the above fractional eigenvalue equation subject to the boundary condition [20]

Dða�2Þâþa ¼ ðâþaÞ1 as u ! 0 ðC4Þ

is represented by

âþa ¼ ðâÞþa
1 ua�2Ea�1;a�1 kða�1Þuða�1Þ

h i
ðC5Þ

in which Ea,b(x) denotes the Mittag–Lefler function of order a, b. To determine the eigenvalue spectrum kða�1Þ
n , we use a

boundary condition that fixes the behavior of âþa and ðâþaÞ1 as the scalar field u approaches its upper limit u ! u0,
namely

âþaðu0Þj0i ¼ Aþaðu0Þj0i ðC6Þ

On the other hand we have, starting from the boundary condition definition (C4),

ðâþaÞ1ðuÞj0i ¼ Aþa
1 ðuÞj0i as u ! 0 ðC7Þ

where it is assumed that

Aþa
1 ð0Þ ¼ Aþa

1 ðu0Þ ðC8Þ

This ansatz leads to the following implicit equation for kða�1Þ
n

Aþaðu0Þ ¼ Aþa
1 ð0Þua�2

0 Ea�1;a�1 kða�1Þua�1
0

h i
ðC9Þ

Appendix D

The equivalent metric must transform in a way that maintains invariance of the space–time interval under arbitrary
coordinate changes x ! �xðxÞ. Hence, in general

�g�akrð�xÞðd�xkÞ�aðd�xrÞ�a ¼ ga
lmðxÞðdxlÞaðdxmÞa ðD1Þ

where �a labels the exponent corresponding to the reference frame �x. On account of (5), the partial derivative
o
�aðxlÞa=oð�xkÞ�a may be defined as

o
�aðxlÞa

oð�xkÞ�a
¼ 1

Cð1 � �aÞ

Z �xk

�1

oðxlÞa

o�n
k

d�n
k

ð�xk � �n
kÞ�a

ðD2Þ

The formal connection between �g�akrð�xÞ and ga
lmðxÞ may be consequently obtained upon replacing (D2) in (D1).
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Abstract

Bringing closure to the host of open questions posed by the current standard model for particle physics (SM) con-
tinues to be a major challenge for the theoretical physics community. Despite years of multiple research efforts, a con-
sistent and comprehensive understanding of standard model parameters is missing. Our work suggests that critical
dynamics of the renormalization group flow provides valuable insights into most of the unresolved issues surrounding
SM. We report that the dynamics of the renormalization group flow and the topological approach of El Naschie’s e1

theory are viewpoints that share a common foundation. The paper concludes with a brief overview of future develop-
ments and integration efforts.
� 2007 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

As of today, predictions inferred from the standard model of elementary particles (SM) – a body of knowledge dis-
covered in the early 1970s – agree with all the experiments that have been conducted to date. Nevertheless, the majority
of particle theorists feel that SM is not a complete framework, but rather an ‘‘effective field theory’’ that needs to be
amended by new physics at some higher energy scale reaching in the TeV region. The most cited reasons for this belief
are as follows: (a) the recent discovery of neutrino oscillations and masses; (b) SM does not include the contribution of
gravity and gravitational corrections to both quantum field theory and renormalization group (RG) equations; (c) SM
does not fix the large number of free parameters that enter the theory (in particular the spectra of masses, gauge cou-
plings and fermion mixing angles); (d) SM has a gauge hierarchy problem, which requires fine-tuning; (e) SM postulates
that the origin of electroweak symmetry breaking is the Higgs mechanism, whose confirmation is sought in future accel-
erator experiments. The number and physical attributes of the Higgs boson are neither explained by SM nor fixed from
first principles; (f) SM does not clarify the origin of its underlying SUð3Þ � SUð2Þ � Uð1Þ gauge group and why quarks
and leptons occur in certain representations of this group; and (g) SM does not explain why the weak interactions are
chiral, i.e. sensitive to fermion handedness.

Despite years of research on multiple fronts, there is currently no compelling and universally accepted resolution to
these challenges. A large body of proposed extensions of SM exists, each of them attempting to resolve some unsatis-
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factory aspects of the theory while introducing new unknowns. Expanding on a series of novel and unorthodox con-
tributions of recent years [6–8,10–14,16–18,20], the present work asserts that critical dynamics of the RG flow lies at
the root of the many unsettled questions regarding SM. Specifically, we argue that the generation structure of SM
and its physical parameters stem from either one of the universal period doubling or golden-mean routes to chaos
of the RG flow. Moreover, following [18], we re-iterate that critical behavior in continuous space-time dimension d

and above the upper energy limit of SM, (a) is the source of the SUð3Þ � SUð2Þ � Uð1Þ symmetry group; (b) offers a
natural unification mechanism of gauge boson and fermion fields, including classical gravitation and (c) offers a plau-
sible explanation for chiral properties of weak interactions.

Since the concept of dimension and transfinite structure of space-time are the backbone of El Naschie’s e1 theory
[10–14], the direct consequence of these results is that the nonlinear dynamics view of the critical RG flow and the topo-
logical approach of e1 share a common foundation.

The paper is structured according to the following plan: Section 2 presents a brief account on RG, critical phenom-
ena and the relevance of the concept of dimension in quantum field theory and the e1 model. Critical behavior in con-
tinuous dimension and its implications for the dynamics of the coupling flow are discussed in Section 3. Sections 4 and 5
analyze the evolution of the coupling flow following the period doubling and golden-mean routes to chaos in simple
nonlinear maps. The implications of these routes to chaos on the physics of SM and the link to e1 theory are elaborated
upon in Section 5. An outline on future developments and integration efforts is presented in Section 6. Conclusions are
summarized in the last section.

2. Renormalization group, critical phenomena and the concept of dimension

The scale of correlations in statistical physics and quantum field theory is known to become unbounded in the vicin-
ity of a critical point. In this region, fluctuations lead to singular thermodynamic behavior characterized by universal
critical exponents and scaling functions [1–3]. These power-law singularities bring to light an underlying emerging sym-
metry associated with critical phenomena, namely the manifest scale invariance of the theory: at the critical point, the
physical system has no characteristic scale and the correlation length diverges. RG provides a natural framework for
explaining the onset of critical phenomena, the roots of universality and the classification of various systems in terms of
universality classes. In the context of RG, the process of integrating out fluctuations and the short-distance degrees of
freedom is made systematic. For instance, if there is a single mass scale M in the microscopic theory, RG proceeds by
building an effective field theory whose content may be understood as a power expansion in 1/M. Stated differently, RG
is based on the idea that the renormalization technique absorbs all relevant fluctuations above M into a finite number of
parameters that define the theory. There are two implicit premises behind this technique: (a) fluctuations have a finite
average and (b) renormalization process is carried out at a fixed dimensionality of the space-time background.

Regarding the second premise, a key consequence of RG in both statistical physics and field theory is that universal
properties near second-order phase transitions depend strongly on the space-time dimensionality (d). Consider, for
instance, the traditional one-component Ising model consisting of an orthogonal lattice of spins experiencing nearest
neighbor coupling. It can exhibit an infinite number of multi-critical points in d = 2, a critical Wilson–Fisher or a
tri-critical point in d = 3 and a Gaussian fixed point for d = 4 [4]. Percolation, random walks and formation of fractal
clusters in systems undergoing second-order phase transitions are also typical examples of processes whose outcome
depends on d [1–3]. The relevant literature on statistical physics of phase transitions points out that continuity in
the dimensionality of space-time is an essential ingredient for the correct description of critical phenomena. To be spe-
cific, extrapolation from d = 4 to an infinitesimally lower dimension e ¼ 4� d is the basis for dimensional regulariza-
tion in field theory and represents one frequent method in the non-perturbative study of RG flow near non-trivial fixed
points [1–5]. Recent work on field theories formulated in continuous dimension asserts that a new type of critical behav-
ior develops at a fixed energy scale l as a result of incremental changes in e ¼ 4� d [4,5].

It is important to emphasize in this context that e1 theory also relies on the infinite dimensional structure of the
space-time manifold. The fundamental premise of e1 is that space-time may be thought of as a transfinite collection
of primary Cantor sets having a random distribution of underlying dimensions [10–14]. Three key dimensions assume
the leading role as topological invariants of the theory: the formal infinite dimension n =1, the expectation value
dh i ¼� nh i ¼ 4þ /3, where / represents the golden mean, and the topological dimension nt = 4. Although the contri-

bution of /3 and transfinite corrections are negligible at low-energy scales, they become an underlying source for emer-
gent behavior in the high-energy sector of field theory. It is in this far-from-equilibrium setting where vacuum
fluctuations and the complex topology of the space-time manifold create a rich reservoir for extensive symmetry break-
ing and pattern formation [10]. On this basis, one can establish a deep analogy between the dynamics of critical phenomena
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in continuous dimension and the complex topology of El Naschie’s e1 model. Some of the physical implications of this
analogy are briefly discussed in Section 5.

3. Critical phenomena in continuous dimension

It is known that the dependence of the coupling charge on the energy scale is a basic outcome of RG. Following the
generic formulation of RG in quantum field theory [6,7,9], the beta-function defines how the coupling charges gi ‘‘flow’’
with the sliding energy scale l, that is

biðgiÞ¼
: dðgiÞ

dt
ð1Þ

where the evolution parameter

t¼: ln
l
l0

� �
ð2Þ

is considered at an arbitrary reference scale l0. To fix ideas, let us consider the example of beta-functions that describe
the gauge-coupling sector of SM. At the one-loop contribution of the perturbation expansion, one has [21]

ð4pÞ2biðgiÞ ¼ big3
i ð3Þ

Here, gi, i = 1,2,3 are related to the conventional SM gauge couplings via g1 ¼
ffiffiffiffiffiffiffiffi
5=3

p
g0, g2 � g, g3 ¼ gQCD and the trip-

let of one-loop coefficients is given by b1 ¼ 41
10

, b2 ¼ � 19
6
, b3 ¼ �7, respectively. In order to simplify notation, we ignore

in what follows the index i and take l0 ¼ MZ , the mass of the Z0 boson. In the basin of attraction of a critical point tc

the field correlation length scales as

n � jt � tcjm ð4Þ

Here, critical exponent m is given by [4,5]

m�1 ¼ � ob
oðgÞ

����
g¼g�

ð5Þ

and g* stands for a fixed point of the beta-function, bðg�Þ ¼ 0.
The continuity of the beta-function with respect to d makes it possible to interpret dimension d as a control param-

eter in the same way the energy scale acts as a control parameter in RG. According to this philosophy, the sliding scale t

and d play an interchangeable role. Assume that dc represents the critical dimension for which g flows into the fixed
point g*. The mass of the underlying field is known to be inversely proportional to the divergent correlation length
and identically vanishes at the fixed point

M ½g�ðdcÞ; dc� ¼ 0 ð6Þ

In the basin of attraction of g* the field develops mass according to the power law [4,5]

M ½g�ðdcÞ; dc � d� � jdc � djmðdcÞ ¼ emðdcÞ ð7Þ

where by analogy with (5)

m�1ðdcÞ ¼ �
ob

oðgÞ

����
g�ðdcÞ

ð8Þ

We are led to conclude that, as the fixed point is asymptotically approached and the continuous space-time dimension-
ality collapses to d ! dc ¼ 1; 2; 3; 4 the underlying field theory becomes massless, in agreement with the current prin-
ciples of relativistic quantum field theory [9]. Numerical analysis yields mðdcÞ ¼ 0:5 for dc = 1,2,3,4 which is found to
match well the value reported in the literature [4,5].

An important observation is now in order. Following universality arguments related to the onset of chaos in low-
dimensional maps, the dimensional control parameter e ¼ jdc � dj is expected to asymptotically approach the critical
value e1 ¼ 0 according to the geometric progression [24,25]:

en � e1 � an 	 d�n ð9Þ

in which n
 1 is the index defining the number of iteration steps, d is a scaling constant that is representative for the
class of dynamical maps under consideration and an is a coefficient which becomes asymptotically independent of n, that
is, a1 ¼ a. Substituting (9) in (7) produces to the mass scaling series
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Mn½g�ðdcÞ; dc � dn� � ðand
�nÞ1=2 ð10Þ

We may go a step further and state that, given the link between the coupling flow and the evolution of masses and fields
in RG [9], similar scaling pattern develops for gn and the underlying fields of the theory, gn. We thus expect to obtain,
for n
 1

ð11Þ

where k (dc) and f(dc) represent two additional critical exponents dependent on dc.

4. Chaotic dynamics of the beta-function

The goal of this section is to use the simplest models that simulate the chaotic dynamics of the beta-function (3) and
invoke universality principles to extrapolate results to more realistic settings.

As it is known, a key issue in the study of deterministic dynamical systems is to identify the different types of asymp-
totic behavior defined by n
 1 and to understand how this behavior changes under incremental variations of the con-
trol parameter. The asymptotic behavior can be, for instance, a steady state, a periodic oscillation, a quasi-periodic or a
chaotic motion. There are four traditional routes to chaotic attractors in generic maps: period doubling, intermittency,
crises and quasiperiodicity. In what follows, we focus exclusively on: (a) the period doubling cascade corresponding to
the Feigenbaum attractor in maps with quadratic maxima and (b) the quasi-periodic route to chaos through irrational
winding numbers (the so-called ‘‘golden-mean’’ approach to chaos) [23,24].

4.1. Period doubling transition to chaos

Eq. (3) may be viewed as describing the dynamics of a free over-damped oscillator with cubic interaction [24]:

o2g
ot2
þ c

og
ot
þ x2g � bg3 ¼ 0 ð12Þ

Here, o2g=ot2 � OðeÞ denotes the second-order derivative of the coupling with respect to the fictitious time
t ¼ lnðl=MZÞ, c ¼ ð4pÞ2 stands for the damping parameter and x � OðeÞ is the fictitious oscillator frequency. A
straightforward way to simulate the effect of sustained fluctuations induced by dimensional variation near the fixed
points (dc) is to add to (12) an infinite series of periodic kicks as in

o2g
ot2
þ c

og
ot
þ x2g � bg3 ¼

X
j

edðt � jT Þ ð13Þ

Here, T denotes the interval between kicks and e ¼ jdc � dj is their amplitude. Following [19], we introduce the complex
variable

k ¼ ig þ 1

x
og
ot

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

8

b
x

e�cT � 1

c

s
ð14Þ

which transforms (13) into the so-called Ikeda map

knþ1 ¼ Aþ Bkn expðið knj j2 þ wÞÞ ð15Þ
where

A ¼ e
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

8

b
x

e�cT � 1

c

s

B ¼ e�cT =2

w ¼ xT

ð16Þ

In what follows, we focus on the effect of sufficiently small kicking intervals T � OðeÞ commensurate with the reference
scale l0 ¼ MZ . This particular case corresponds to B ¼ 1;w ¼ OðeÞ and yields a finite absolute value for A since
x � OðeÞ. Furthermore, assuming for the sake of simplicity a strongly over-damped system, we have
cog=ot
 o2g=ot2 and A
 1. Under these circumstances, it can be shown that (15) may be transformed into the follow-
ing one-dimensional map [24]
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rnþ1 ¼ A2½2 cosðrnÞ þ 1� ð17Þ

upon performing the substitution

r ¼ A Aþ kþ k�
� �� 	

ð18Þ

The map (17) exhibits the well-known path to the Feigenbaum attractor via universal period doubling bifurcations in
maps with quadratic maxima. The corresponding sequence of control parameters A2 (and, implicitly, the sequence of
dimensional parameters e2Þ converges to the Feigenbaum constant d2 ¼ 4:669 . . ., i.e.

en � d�n=2
2 ð19Þ

A more accurate representation is obtained by accounting for the contribution of higher order corrections to the Fei-
genbaum scaling [22]

en �
X

k

Dkd
�n
k

 !1=2

ð20Þ

in which Dk and dk stand for the generic expansion coefficient and Feigenbaum constant of order k.

4.2. Golden-mean transition to chaos

To link (3) with the onset of chaos through instability of quasi-periodic orbits, we assume below that: (a) the cubic
term may be supplemented with higher order contributions that simulate the action of periodic fluctuations, (b) the
gauge-coupling equation is perturbed by a term proportional to the dimensional control parameter e. Hence, we pro-
ceed by extrapolating (3) to

ð4pÞ2bðgÞ ¼ b sinðgÞ þ e ð21Þ

which may be cast in the form of a sine circle map, that is

gnþ1 ¼ eþ gn þ K sinðgnÞ ð22Þ

and where the overall fluctuation amplitude is

K ¼ b

ð4pÞ2
ð23Þ

The sequence of dimensional parameters obeys the universal scaling

enðKÞ � cd�n ð24Þ

in which c is a scaling coefficient and the so-called Kadanoff–Feigenbaum–Shenker (KFS) constant depends on the
golden-mean / according to [23,24]

d ¼ /�2 ¼
ffiffiffi
5
p
� 1

2

 !�2

ð25Þ

By analogy with the period doubling scenario, a better approximation of (24) may be obtained through the use of higher
order scaling corrections, that is

enðKÞ � c
X

k

Dkd
�n
k

 !1=2

ð26Þ

where Dk and dk denote the generic expansion coefficient and KFS constant of order k.

5. Universal scaling of SM parameters

5.1. The period doubling scenario

For period-doubling bifurcations we take n = 2m, with m > 1. Replacing in (10) yields the following mass series:

Mm �
ffiffiffiffiffiffiffi
a2m
p 	 d�2m

2 	
1
2 ¼ ffiffiffiffiffiffiffi

a2m
p 	 d�2m�2 ð27Þ
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The ratio of two arbitrary masses is therefore

Ml

Mm
�

ffiffiffiffiffiffiffi
a2l

a2m

r
	 d
�2l�2

d�2m�2 ð28Þ

where lim al
am
¼ 1 as l;m!1. Thus, for two consecutive terms in the mass series and ignoring higher order scaling

corrections,

Ml
Mlþ1
�

ffiffiffiffiffiffiffiffi
a

2l

a
2lþ1

q
	 d2l�2

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffia2l ;2lþ1
p 	 d2l�2

ð29Þ

It is important to emphasize that (29) provides only a first-order approximation considering that (a) no higher order
corrections are accounted for, (b) (29) is less accurate if the iteration index is not large enough, that is, if l � Oð1Þ,
and (c) there is a fair amount of uncertainty involved in determining the quark mass spectrum [15].

Numerical results derived from (29) are displayed in the table below. This table contains a side-by-side comparison
of estimated versus actual mass ratios for charged leptons and quarks and a similar comparison of gauge-coupling
ratios. All masses and couplings are evaluated at the energy scale given by the top quark mass. Quark masses are aver-
aged using the most recent reports issued by the Particle Data Group [15]. Specifically, mu = 2.12 MeV; md = 4.22 MeV;
ms = 80.9 MeV; mc = 630 MeV; mb = 2847 MeV; mt ¼170,800 MeV (see Table 1).

The scaling sequence of charged leptons and quarks may be graphically summarized with the help of the following
diagrams:

Based on the above scheme, one may infer that one of the possible patterns for neutrino masses is given by:

16

e

4

Table 1
Fermion masses and coupling ratios

Scaling ratio 2l�2 Experimental value Estimated value

mu=mc 4 3.365 · 10�3 2.104 · 10�3

mc=mt 4 3.689 · 10�3 2.104 · 10�3

md=ms 2 0.052 0.046
ms=mb 2 0.028 0.046
me=ml 4 4.745 · 10�3 2.104 · 10�3

ml=ms 2 0.061 0.046
ðaEM=aW Þ2 2 0.053 0.046
ðaEM=asÞ2 4 4.034 · 10-3 2.104 · 10-3
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It is also instructive to note that quarks and charged leptons follow a different period doubling pattern. To this end, let
us organize the charged lepton and quark masses in a collection of triplets, that is

Ml¼: ½me ml ms �; Mq¼:
mu md

mc ms

mt mb

2
64

3
75 ð30Þ

It can be seen that the mass scaling for adjacent quarks stays constant within either one of the triplets (u, c, t) or (d, s, b),
whereas the mass scaling for charged leptons varies as a geometric series in d2

2 within the triplet ðe; l; sÞ. This finding
points out toward a symmetry breaking mechanism that segregates lepton and quark phases in the process of ‘‘cooling’’
from the far ultraviolet region of field theory to the low-energy region of SM.

5.2. The golden-mean scenario and e1 theory

In this case we start by substituting (25) in (10). Ignoring the higher order scaling contributions, the generic term of
the mass series becomes

Mn � an 	 /n ð31Þ

The above formula opens the door for a straightforward connection to e1 theory, where the golden mean plays a key
dynamic role [10–14]. A couple of important observations need to be brought up here:

(a) the exponent mðdcÞ ¼ 1=2 introduced in Section 3 describes critical behavior in continuous dimension whereby
dc ¼ 1; 2; 3; 4. This type of behavior occurs in a space-time endowed with an ordinary topological structure.
By contrast, the complex topology of e1 requires a new critical exponent, that is, m1ðdcÞ 6¼ 1=2;

(b) higher order scaling corrections alluded to in Section 4 are replaced in e1 theory by the so-called transfinite cor-
rections. Among the most important transfinite corrections we mention

/3 ¼ hdci � 4

k ¼ /3ð1� /3Þ
k0 ¼ /5ð1� /5Þ

ð32Þ

It is apparent from (32) that the role of the dimensional parameter e = 4�d is played in e1 by /3. From the above obser-
vations, it follows that the scaling relations (10) and (31), adapted to e1 theory and taken in the absence of transfinite
corrections, assumes the form

Mn½g�ðdcÞ;/3� � ð/3Þ�n	m1ðdcÞ ð33Þ

which is consistent with the treatment developed in [10–14].

6. Future developments

The ideas presented in this work strongly support the conjecture that the nonlinear dynamics view of the critical RG
flow and the topological approach of e1 share a common foundation. Bringing into the picture fractional dynamics
may lead to a possible expansion of this conjecture. As shown in [18], the description of complex dynamics in the
TeV regime of field theory warrants the transition from ordinary calculus on smooth manifolds to fractional differen-
tiation and integration. This transition has important implications regarding phenomena that are anticipated beyond
the energy range of SM. In particular, it is argued in [18] that:

(a) fractional dynamics in Minkowski space-time is equivalent to field theory in curved space-time. This result points
out to a natural integration of gravity in the far ultraviolet region of standard field theory;

(b) the SUð3Þ � SUð2Þ � Uð1Þ gauge group of SM is rooted in the concept of continuous dimension;
(c) fractional dynamics is the underlying source of parity non-conservation in processes involving the SU(2) group.

As such, fractional dynamics offers a plausible explanation for the inherent chirality of weak interactions.
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7. Summary and conclusions

We have developed arguments suggesting that critical dynamics of the RG flow lies at the root of many unsettled
questions surrounding SM. Specifically, it was argued that the generation structure of SM and its physical parameters
stem from either one of the universal period doubling or golden-mean routes to chaos of the RG flow. Following this
line of reasoning, one may establish a deep analogy between the dynamics of critical phenomena in continuous dimen-
sion and the complex topology of El Naschie’s e1 model. A brief discussion on how using fractional dynamics may be
able to expand our findings has been presented.
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a b s t r a c t

Both theory and experiments strongly suggest that new phenomena await discovery above
the energy range of the standard model for particle physics (SM). In this brief report we
argue that a correct description of physics in the TeV energy region needs to account for
the inherent randomness induced by short-distance fluctuations. The existence of ‘‘unpar-
ticles”, alleged to emerge at the next-generation colliders, is motivated by a dynamic set-
ting that is out-of-equilibrium and able to sustain a rich spectrum of complex phenomena.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Quantum Field Theory (QFT) is a framework whose methods and ideas have found successful applications in many do-
mains, from particle physics and condensed matter to cosmology, statistical physics and critical phenomena [1,2]. As a fun-
damental synthesis of quantum mechanics and special relativity, QFT forms the foundation for SM, a body of knowledge that
describes the behavior of all known particles and their interactions except gravity. Feynman diagrams are well-established
tools for computing transition amplitudes in QFT [1,2]. As particle physics enters the era of high-energy experiments at the
Large Hadron Collider (LHC) and International Linear Collider (ILC), one is compelled to ask the following question: How reli-
able is the apparatus of perturbation theory in the Terascale sector of field theory? To answer this question, it is important to
properly define the domain of validity for the path integral (PI) formalism of QFT and the technique of Feynman diagrams. In
particular,

(a) The PI formalism is often used in conjunction with so-called ‘‘effective field theories” (EFT). EFT are based on the expli-
cit hypothesis that microscopic fields (quantum corrections contributed by heavy excitations) can be coarse-grained
and absorbed into a re-definition of the coupling coefficients defining the Lagrangian [3]. This conjecture assumes that
microscopic fields are stable and can be effectively shielded from interfering with macroscopic fields. However, over-
lap continues to exist in the so-called crossover region where fluctuations cannot be fully suppressed [4].

(b) Quantum processes maintain coherence. This ansatz fails in the presence of fast fluctuations that rapidly decohere the
system and drive the transition from ‘‘quantum” to the ‘‘classical” behavior [5].

(c) Evolution is assumed to be unitary, regular, Markovian and described by analytic functions. According to [6], Hamil-
tonian systems are carriers of chaos. The phase space of an arbitrary Hamiltonian system contains regions where
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motion occurs with a mixing of trajectories. In this instance, the hypothesis of regular evolution and ‘‘smooth” trajec-
tories breaks down.

(d) Compliance with special relativity demands that particle processes are strictly local. But the ‘‘locality” ansatz is bound
to fail near second order phase transitions following the manifest loss of scale associated with critical phenomena.
Critical behavior involves cooperative phenomena that evolve on vastly different length scales while still remaining
compliant with relativity. In this instance, the concept of ‘‘locality” cannot be separated from the concept of observation
scale: self-similarity enables one to map a non-local process into a local one by an appropriate scale transformation.

It is our view that all these arguments call for a paradigm shift in how field theory is approached beyond SM. A natural
question is then: What is the best way to initiate this change of perspective? Owing it to the significant progress in this field,
we believe that a promising avenue is the complex dynamics of non-linear systems. Pattern formation and self-organized crit-
icality are typical examples of phenomena that display complex behavior [7,8]. Recent years have taught us that complex
phenomena seem to show ‘‘universality” across vastly different energy regions. Collective behavior is prone to develop in
non-linear systems that are open to environmental or internal fluctuations. Since QFT is essentially based on non-linear gauge
models and its short-distance regime describes phenomena that unfold under large perturbations in momentum, it is rea-
sonable to assume that complexity will play a key role in explaining upcoming experiments at LHC, ILC and next-generation
accelerators [8–10]. By the same token, analytic tools offered by stochastic dynamics and non-equilibrium statistical physics
will most likely be of great utility to this undertaking [22,23].

Recently, the possibility of a scale-invariant hidden sector of particle physics extending beyond SM has attracted a lot of
attention [11–15]. A strange consequence of this hypothesis is the emergence of a continuous spectrum of massless fields
having non-integral scaling dimensions called ‘‘unparticles”. Drawing from arguments pertaining to the behavior of Renor-
malization Group in the presence of random fluctuations [16–18], we suggest herein that the would-be ‘‘unparticles” arise
due to a dynamic setting that is manifestly stochastic and out-of-equilibrium. It is also suggested that this picture enables a
natural explanation for breaking of space-time symmetries in weak interactions. The violation of space-time symmetries has
recently been identified as a promising candidate signal for physics beyond SM [19].

We caution that our study has an introductory nature. As such, it does not claim to be fully rigorous or comprehensive.
Independent research work is needed to confirm, expand or refute these preliminary findings.

2. Effective field theory and Terascale physics

Following [11,12], we begin with the hypothesis that there is a hidden sector lying beyond SM whose existence is likely to
be uncovered at LHC, ILC or future accelerators. To streamline the derivation, we use the EFT prescription [3] and model this
sector using a single light field operator O(l) in interaction with a single heavy state that emerges in the deep UV region
(K�KSM). Here, KSM ¼ OðG�1=2

F Þ � 300 GeV stands for the uppermost bound of SM corresponding to the weak interaction
scale. The EFT is then defined by the Lagrangian

LEFTðlÞ ¼ cðl;KÞOðlÞ ¼ c0ðlÞ
KdO�4 OðlÞ ð1Þ

Here, l is the sliding scale and d0 the mass dimension of operator O(l)

½OðlÞ� ¼ ld0 ð2Þ

Lagrangian (1) contains only the light field operator and the effect of the heavy field is encoded in the coupling constant
c(l,K). Our aim is to study the behavior of the theory near its infrared fixed point lIR �KSM.

According to [16], the light field operator acts as a random object in momentum space. Without any loss of generality, let
us define the coarse-grained operator

ORðlÞ ¼
1
K

Z
OðgÞWðl� gÞdg ð3Þ

in which l stands for the sliding scale and K is normalization constant. The kernel function W(l) is linearly related to the
coarse-grained probability density of locating a specific value in momentum space p(O(l),c0(l0)). It can be shown that
the asymptotic form of the coarse-grained probability density near the IR point is given by [16]

lim
l!KSM

OðlÞ; c0ðl0Þ� � l�dF
Oðl0Þ
ld0

0

l
l0

� ��d

; c�0

" #
ð4Þ

where

d ¼ d0 þ
1
2
cðc�0Þ ð5Þ

Here, the theory is assumed to be massless for simplicity, c�0 is a fixed point of c0(l), l0 denotes an arbitrary reference scale
and c(� � �) represents the so-called anomalous dimension. This universal result indicates that the large scale asymptotic form
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of the coarse-grained probability density represents a non-trivial power of the sliding scale times a certain dimensionless
function F[� � �]. Replacing in (3) yields

lim
l!KSM

ORðlÞ /
Z

OðgÞðl� gÞ�dF
Oðl0Þ
ld0

0

l� g
l0

� ��d
" #

dg ð6Þ

Since there is no restriction regarding the choice of l0, it is convenient to assume

jl� gj � l0 ð7Þ

On account of (7), a reasonable approximation of (6) can be presented as

lim
l!KSM

ORðlÞ /
Z
ðl� gÞ�d oX1

og
dgþ

Z
ðl� gÞ1�d oX2

og
dg ð8Þ

where

OðgÞ¼: oX1ðgÞ
og

OðgÞoFðgÞ
og

����
l¼g
¼: oX2ðgÞ

og
ð9Þ

The next section makes connection to fractional differential operators, fractional dynamics and their relevance to (8).

3. Fractional dynamics: a brief overview

As pointed out in the Introduction, a key assumption of EFT is that microscopic fields are stable and can be completely
decoupled from macroscopic fields. Probing matter in the near or deep Terascale sector will likely violate this assumption.
In the so-called crossover region, the unavoidable action of un-damped quantum corrections creates a mixing of microscopic
and macroscopic fields [4,9]. As a result, instabilities can develop on long time-scales and the macroscopic description of
phenomena in terms of conventional differential operators breaks down. This is, in essence, the main argument for using
fractional operators in the far TeV region of field theory, for the passage from ordinary to fractional dynamics and non-exten-
sive statistical physics [27,28]. The framework of fractional dynamics offers a reliable tool for the study of far-from equilib-
rium processes that display scale-invariant properties, dissipation and long-range correlations. It plays nowadays an
increasingly important role in many branches of engineering, science and applied mathematics [21,24,26,27] and included
references].

Returning to (8) and using the explicit expression of differential operator from fractional calculus, we arrive at

lim
l!KSM

ORðlÞ / Dd
CX1ðlÞ þ Dd�1

C X2ðlÞ ð10Þ

where the Caputo derivative of order a is defined by [20,25]

Da
Cf ðxÞ¼: 1

Cð1� aÞ

Z
ðx� sÞ�a df ðsÞ

ds

� �
ds ð11Þ

This result confirms that, near and above the weak interaction scale KSM, conventional differential operators need to be
replaced by fractional operators. Our finding is consistent with [16], where it is argued that Renormalization Group in the
presence of random fluctuations and interactions describes fractional Brownian motion and complex behavior. We also di-
rect the reader to [9], in which a similar motivation is articulated in greater detail.

4. On the domain of validity of fractional dynamics

One important remark is now in order. It is known that the requirement of unitary evolution represents a fundamental
postulate of both quantum mechanics and QFT.Quantum physics describes equilibrium dynamical processes which are unaf-
fected by unitary transformations. The corresponding operators are known to preserve transition probabilities among var-
ious states and satisfy a group property [1,2].

The weak interaction scale KSM is the highest energy threshold probed with the current accelerator technology. There are
grounds to suspect that unitary evolution postulated by QFT no longer holds near or above KSM. Here, quantum processes are
expected to evolve in a highly unstable, ‘‘noisy” environment and are prone to migrate outside equilibrium [9,10,21,24]. As
previously pointed out, it is believed that a correct account of this dynamic regime requires use of fractional operators and
fractional dynamics. It is important to understand that, since fractional operators are non-unitary and obey only a semi-
group property [25], they cannot describe the physics of SM which, by definition, unfolds below KSM.
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5. Concluding remarks

There are two important consequences that can be drawn from our model:

(1) We have suggested in [9] that the onset of fractional dynamics leads to the emergence of non-integer numbers of par-
ticles and antiparticles. The approach developed here reinforces this conclusion: unusual states of matter, if they exist,
are directly related to complex dynamics induced by Terascale fluctuations. This is in contrast to [11,12] where
‘‘unparticles” emerge from the action of a hidden sector of particle physics that lies beyond SM.

(2) Fractional operators defined on space-time have a built-in asymmetry to the inversion of coordinates. This property
enables a natural explanation for breaking of parity and time symmetries in weak interactions [21,24]. The origin of
these two symmetry violations is currently an unsettled issue of SM [29].
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Abstract

Fractional dynamics is an attractive framework for understanding the complex phenomena that are likely to emerge
beyond the energy range of the Standard Model for particle physics (SM). Using fractional dynamics and complex-scalar
field theory as a baseline, our work explores how physics on the high-energy scale may help solve some of the open ques-
tions surrounding SM. Predictions are shown to be consistent with experimental results.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

As of 2006, predictions derived from the Standard Model of elementary particles (SM) – a body of knowl-
edge discovered in the early 1970s – agrees with all the experiments that have been conducted to date. Nev-
ertheless, the majority of particle theorists feel that SM is not a complete framework, but rather an ‘‘effective
field theory’’ that needs to be extended by new physics at some higher energy scale reaching in the TeV region.
The most cited reasons for this belief are: (a) the recent discovery of neutrino oscillations and masses; (b) SM
does not include the contribution of gravity and gravitational corrections to both quantum field theory and
renormalization group (RG) equations; (c) SM does not fix the large number of free parameters that enter
the theory (in particular the spectra of masses, gauge couplings and fermion mixing angles); (d) SM has a
gauge hierarchy problem, which requires fine-tuning; (e) SM postulates that the origin of electroweak symme-
try breaking is the Higgs mechanism, whose confirmation is sought in future accelerator experiments. The
number and physical attributes of the Higgs boson are neither explained by SM nor fixed from first principles,
(f) SM does not clarify the origin of its underlying SU(3) · SU(2) · U(1) gauge group and why quarks and
leptons occur in certain representations of this group, (g) SM does not explain why the weak interactions
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are chiral, that is, why only fermions with one handedness experience the force transmitted by the triplet of
massive vector bosons W+, W�, Z0.

Despite years of research on multiple fronts, there is currently no compelling and universally accepted res-
olution to the above-mentioned challenges. A large body of proposed extensions of SM exists, each of them
attempting to resolve some unsatisfactory aspects of the theory while introducing new unknowns. Expanding
on a series of recent contributions centered on RG, non-linear dynamics, chaos and fractal geometry [3,4,6–
10,12–14,17–19], our work explores how the physics on the TeV regime may shed light onto some of the open
questions surrounding SM.

The paper is organized as follows: Section 2 surveys the motivation for fractional dynamics in the far ultra-
violet region of field theory. The principle of local scale invariance is briefly introduced in Section 4. Fractional
dynamics of a ‘‘toy’’ model based on complex scalar fields is analyzed in Section 5. Sections 6–8 discuss how
critical behavior in continuous dimension acts as source of massive field theories and makes connection to SM
data. Concluding remarks are presented in the last section. We emphasize from the outset the introductory
nature of our work. As such, its content is not aimed to be either entirely rigorous or formally complete. Inde-
pendent research efforts are required to confirm, develop or disprove these preliminary results.

2. Fractional dynamics and the far ultraviolet region of field theory

It is generally believed that quantum field theory breaks down near the so-called Cohen–Kaplan threshold
of �100 TeV as a result of exposure to large vacuum fluctuations and strong-gravitational effects. No conve-
nient redefinition of observables is capable of turning off the dynamic contribution of these effects. For
instance, it is known that the zero-point vacuum energy diverges quadratically in the presence of gravitation.
Quantum field theory in Euclidean space-time discards the zero-point vacuum energy through the use of a nor-
mal time ordering procedure [5,20]. Because vacuum energy is gravitating and couples to all other field ener-
gies present at the quantum level, cancellation of the zero-point term is no longer possible when gravitational
effects are significant. Likewise, this strong coupling regime of the far ultraviolet region suggests that even
asymptotically free theories such as QCD reverse their properties in response to arbitrarily large non-pertur-
bative effects. In fact, complex dynamics of quark-gluon plasma is expected to arise near the so-called transi-
tion temperature [16].

The non-linearity of the underlying field theory combined with the far-from-equilibrium dynamics induced
by highly unstable vacuum fluctuations are prone to lead to self-organized criticality [6]. Because dynamical
instabilities can develop on long time-scales, the macroscopic description of phenomena in terms of conven-
tional differential operators breaks down. This is, in essence, the main argument for using fractal operators in
the far TeV region of field theory and for the passage from ordinary to fractional dynamics [14,18,19,21]. Since
application of fractals in contemporary physics has become far ranging, the interest in fractional dynamics has
grown at a steady pace in the last decade. There is now a broad range of applications of fractional dynamics in
research areas where fractal attributes of underlying processes and the onset of long-range correlations
demand the use of fractional calculus. These areas include, but are not limited to, wave propagation in com-
plex and porous media, models of systems with chaotic and pseudo-chaotic dynamics, random walks with
memory, colored noise and pattern formation, anomalous transport and Levy flights, studies of scaling phe-
nomena and critical behavior, plasma physics, turbulence, quantum field theory, far-from-equilibrium statis-
tical models, complex dynamics of data networks and so on (for a brief review of current applications, see [21–
26]).

3. Conventions and assumptions

(a) Einstein summation convention is applied throughout.
(b) The Poincare index is denoted by l = 0,1,2,3.
(c) We study a basic ‘‘toy’’ model containing a single pair of massive complex-scalar fields u(x), u*(x).
(d) The analysis is carried out exclusively at the classical level. Suppression of quantum attributes and tran-

sition to classical behavior is the result of decoherence induced by steady exposure to large random fluc-
tuations [27,28].

1398 E. Goldfain / Communications in Nonlinear Science and Numerical Simulation 13 (2008) 1397–1404



(e) Following [22–26] we use in our work the left Caputo fractional derivative defined as

DauðxÞ ¼: 1

Cðn� aÞ

Z x

0

uðnÞðsÞ
ðx� sÞaþ1�n ds ð1Þ

where n � 1 < a < n and u(n)(s) G dnu(s)/dsn. We note that, in addition to using (1), many studies based
on fractional calculus often start from alternative operators such as Riemann–Liouville and Grunwald–
Letnikov derivatives and integrals (see [30–33] for details).

(f) Space–time variables and fields are suitably normalized as dimensionless observables.
(g) Assuming that the field dynamics has low-level fractionality, we use the so-called e-expansion to perform

the transition from first order to Caputo derivatives of order a G 1 � e according to the prescription [22]

D1�euðxÞ ¼ ouðxÞ þ eD1uðxÞ

D1uðxÞ ¼: ouð0Þ ln jxj þ couðxÞ þ
Z x

0

o2uðsÞ ln jx� sjds
ð2Þ

4. Local scale invariance at the onset of fractional dynamics

The novel symmetry principle that underlies the onset of fractional dynamics in the TeV region is the local

scale invariance of the theory [17]. There is a two-fold rationale for the onset of this symmetry, namely,

(a) Field dynamics is scale-invariant. This is equivalent to stating that, in dimensional regularization scheme,
the outcome of the regularization procedure does not depend on the particular choice of e = 4 � d [20].

(b) By analogy with the definition of the Lipschitz–Hölder exponent and to ensure compliance with relativ-
ity [14,17], we take the continuous dimension parameter e to denote a locally defined function of space-
time coordinates, e(x). In addition, we assume that e(x) may be expressed either as a contravariant ei(x) or
a covariant ei(x) four-vector. This motivates us to formally extend (2) to

D1�elðxÞuðxÞ ¼ o
luðxÞ þ elðxÞDl

1uðxÞ

Dl
1uðxÞ ¼

:
oluð0Þ ln jxj þ coluðxÞ þ

Z x

0

ðo2ÞluðsÞ ln jx� sjds

D1�elðxÞuðxÞ ¼ oluðxÞ þ elðxÞD1;luðxÞ

D1;luðxÞ ¼
:

oluð0Þ ln jxj þ coluðxÞ þ
Z x

0

ðo2ÞluðsÞ ln jx� sjds

ð3Þ

5. Fractional dynamics of the complex-scalar field

The goal of this section is to show that the principle of local scale invariance and the introduction of frac-
tional dynamics lead to a mechanism of gauge boson-fermion unification that is fundamentally distinct from
the mechanism advocated by supersymmetry.

The Lagrangian density of our model is

L ¼: oluðxÞolu�ðxÞ � m2u�ðxÞuðxÞ ð4Þ
where m the mass of the field and x is a shorthand notation for (xl) or (xl). Using the framework of Caputo
derivatives and e-expansion [22], one obtains

L ¼: D1�eðxÞ
l uðxÞDl;1�eðxÞu�ðxÞ � m2u�ðxÞuðxÞ ð5Þ

where the locally defined infinitesimal dimension e(x) satisfies the condition e(x) Æx� 1. Our aim is to show
that, in contrast with conventional field theory embodied in (4), use of Caputo derivatives guarantees invari-
ance under local gauge transformations without the explicit need for gauge fields and covariant operators. To
this end, let us perform the local phase change
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uðxÞ ! eiaðxÞuðxÞ
u�ðxÞ ! e�iaðxÞu�ðxÞ

ð6Þ

Up to a first-order approximation, Caputo derivatives transform as [22]

D1�eðxÞ
l uðxÞ ! D1�eðxÞ

l ½eiaðxÞuðxÞ� ¼ ol½eiaðxÞuðxÞ� þ eðxÞD1
1;l½eiaðxÞuðxÞ�

D1�eðxÞ;lu�ðxÞ ! D1�eðxÞ;l½e�iaðxÞu�ðxÞ� ¼ o
l½e�iaðxÞu�ðxÞ� þ eðxÞD1;l

1 ½e�iaðxÞu�ðxÞ�
ð7Þ

where

D1
1;lðxÞ ¼

:
ln jxjol½eiað0Þuð0Þ� þ

Z x

0

o2
l½eiaðkÞuðkÞ� ln jx� kjdkþ col½eiaðxÞuðxÞ�

D1;l
1 ðxÞ ¼

:
ln jxjol½e�iað0Þu�ð0Þ� þ

Z x

0

o2;l½e�iaðkÞu�ðkÞ� ln jx� kjdkþ col½e�iaðxÞu�ðxÞ�
ð8Þ

in which c stands for the Euler constant and

ol½eiaðxÞuðxÞ� ¼ eiaðxÞ½ol þ iolaðxÞ�uðxÞ ð9Þ

Local gauge invariance of (5) is preserved if Caputo derivatives transform covariantly, that is

D1�eðxÞ
l ½eiaðxÞuðxÞ� ¼ eiaðxÞD1�eðxÞ

l uðxÞ
Dl;1�eðxÞ½e�iaðxÞu�ðxÞ� ¼ e�iaðxÞDl;1�eðxÞu�ðxÞ

ð10Þ

On account of (7) and (10), we arrive at the following set of conditions:

ieiaðxÞuðxÞolaðxÞ ¼ eðxÞfD1
1l½eiaðxÞuðxÞ� � eiaðxÞD1

1luðxÞg
ð�iÞe�iaðxÞu�ðxÞolaðxÞ ¼ eðxÞfD1;l

1 ½e�iaðxÞu�ðxÞ� � e�iaðxÞD1;l
1 u�ðxÞg

ð11Þ

The direct consequence of (11) is that gauge fields are no longer required in a field theory built on fractional
dynamics. The compensating role of the vector bosons is played by the continuous dimension parameter e(x).
This conclusion is consistent with previous studies [14,17,19] and points to a novel unification mechanism of
gauge boson and fermion fields, including classical gravitation. This mechanism is fundamentally different
from the unification scheme postulated by supersymmetry and related quantum field models [20].

6. Emergence of massive field theories

It is known that, allowing elementary particles to have non-zero masses in quantum field theory violates
local gauge and weak isospin symmetries imposed on the standard model lagrangian. The mechanism of
so-called spontaneous symmetry breaking (SSB) posits that the vacuum itself acquires a non-zero charge dis-
tribution that leaves the Lagrangian invariant and generates both fermion and vector boson masses [5,20]. In
SM, massive fermions exist in both left-handed and right-handed states. The only Dirac field operators that
yield a non-vanishing mass are bilinear products of fields having the form

m�ww ¼ mð�wRwL þ �wLwRÞ ð12Þ

However, such mass terms mix right and left-handed spinors and are forbidden from the Lagrangian on ac-
count of violation of the weak isospin symmetry [5,20]. Stated differently, since wL represents a SU(2) doublet
and wR a SU(2) singlet, the product of the two is not a singlet, as it ought to be in order to preserve the weak
isospin symmetry. An immediate question that arises from the previous section is whether or not SSB still ex-
ists in a field theory based on fractional dynamics. Stated differently, can mass terms be introduced in the
Lagrangian without violating local and weak isospin symmetries? To answer this question, we note that the
first-order Caputo operator may be defined either from the ‘‘left’’ or from the ‘‘right’’ and, in general, the effect
produced by D1�e(x) is not identical with the effect produced by D1+e(x). It follows that the proper description
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of fractional differentiation requires a doublet of Caputo operators
D1�eLðxÞ

D1þeRðxÞ

� �
and a doublet of scalars

eLðxÞ
eRðxÞ

� �
with eL,R(x) Æx� 1. Therefore, mass terms that correspond to Dirac bilinears assume the form:

w! D�eLw or w! DeRw for singlets

ðw1 w2 Þ !
D�eL

DþeR

� �
ðw1 w2 Þ and

w1

w2

� �
! D�eL DþeRð Þ

w1

w2

� �
for doublets

ð13Þ

It can be seen that these mass terms automatically preserve the weak isospin symmetry in a similar manner in
which the Higgs scalar doublet works in the electroweak model [5,20,29].

7. Critical behavior in continuous dimension

The previous sections have shown that the concept of dimension takes on a key role in the far ultraviolet
region of field theory. Here we elaborate on this conjecture by making connection to the philosophy of the
renormalization group and critical behavior in continuous dimension [1,2]. To streamline the derivation,
we refer in what follows to the original Lagrangian (4). Let us start by adding a potential term to (4), that is

L¼: oluðxÞolu�ðxÞ � m2u�ðxÞuðxÞ þ k2½u�ðxÞuðxÞ�2 ð14Þ

Here g = k2 represents the self-interaction strength of the field. According to the renormalization group, the
so-called beta-function defines how g ‘‘flows’’ with the sliding energy scale l, that is

bðgÞ ¼: dðgÞ
dt

ð15Þ

where

t ¼: ln
l
l0

� �
ð16Þ

for an arbitrary reference scale l0. In the basin of attraction of a critical point tc the field correlation length
scales as

n � jt � tcjm ð17Þ

Here, critical exponent m is given by [1,2]

m�1 ¼ � ob
oðgÞ

����
g¼g�

ð18Þ

and g* stands for a fixed point of the beta-function, b(g*) = 0.
One can exploit the interchangeable roles played by the sliding scale t and the dimension parameter d(x) as

follows. Assume that dc represents the critical dimension for which g flows into the fixed point g*. The mass of
the complex-scalar field is known to be inversely proportional to the divergent correlation length and vanishes
identically at the fixed point [1,2]

m½g�ðdcÞ; dc� ¼ 0 ð19Þ

In the basin of attraction of g* the field develops mass according to the power law

m½g�ðdcÞ; dðxÞ � dc� � jdðxÞ � dcjmðdcÞ ¼ jeðxÞjmðdcÞ ð20Þ

where

m�1ðdcÞ ¼ �
ob

oðgÞ

����
g�ðdcÞ

ð21Þ

We are led to conclude that, as the fixed point is asymptotically approached and the continuous space-time
dimensionality collapses to d(x)! dc = 1,2,3,4, the complex-scalar field becomes massless, in agreement with
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conventional quantum field theory. Numerical analysis yields m(dc) = 0.5 for dc = 1,2,3,4 which is found to
match well the value reported in the literature [1,2].

An important observation is now in order. Following the universal properties of the RG flow near the onset
of chaos in low-dimensional maps, the dimensional control parameter e(x) = jdc � d(x)j is expected to asymp-
totically approach the critical value e1 = 0 according to the geometric progression [15]:

enðxÞ � e1 � anðxÞ � d�n ð22Þ

in which n	 1 is the index defining the number of iteration steps, d stands for a scaling constant that is rep-
resentative for the class of dynamical maps under consideration and an(x) is a coefficient which becomes
asymptotically independent of n and x, that is, a1 = a. Substituting (22) in (20) produces to the mass scaling
series

mn½g�ðdcÞ; dc � dnðxÞ� � ½and
�n�1=2 ð23Þ

We may go a step further and state that, given the generic link between the coupling flow and the correspond-
ing flows of masses and fields in RG [5,20,29], similar scaling pattern develops for gn and the underlying fields
of the theory, gn. We thus expect to obtain, for n	 1

gn � g�ðdcÞ � d�kðdcÞn

gn � g�ðdcÞ � d�fðdcÞn
ð24Þ

where k(dc) and f(dc) represent two additional critical exponents dependent on dc.

8. Universal scaling of fermion masses

Period-doubling bifurcations are defined by n = 2m, with m > 1 [15]. Replacing in (23) yields the following
mass series:

mmðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2mðxÞ

p
� d�2m�1

ð25Þ

where d = 4.669. . . represents the Feigenbaum constant for the onset of chaos in quadratic maps. The ratio of
two arbitrary masses is therefore

mlðxÞ
mmðxÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2lðxÞ
a2mðxÞ

s
� d
�2l�1

d�2m�1 ð26Þ

where lim al
am
¼ 1 as l, m!1. Thus, for two sufficiently distant consecutive terms in the mass series, the depen-

dence of an(x) on the space-time variable may be suppressed and we obtain

ml

mlþ1

�
ffiffiffiffiffiffiffiffiffi
a2l

a2lþ1

r
� d2l�1

¼ ffiffiffiffiffiffiffiffiffiffiffiffi
a2l;2lþ1

p � d2l�1

ð27Þ

It is important to emphasize that (27) provides only a first-order approximation considering that (a) (27) is less
accurate if the iteration index is not large enough, that is, if l � O(1), (b) there is a fair amount of uncertainty
involved in determining the quark mass spectrum [11]. Numerical results derived from (27) are displayed in
Table 1. This table contains a side-by-side comparison of estimated versus actual mass ratios for charged lep-
tons and quarks and a similar comparison of gauge coupling ratios. All masses and couplings are evaluated at
the energy scale given by the top quark mass. Quark masses are averaged using the most recent reports issued
by the Particle Data Group [11]. Specifically, mu = 2.12 MeV; md = 4.22 MeV; ms = 80.9 MeV;
mc = 630 MeV; mb = 2847 MeV; mt = 170,800 MeV.

The scaling sequence of charged leptons and quarks may be graphically summarized with the help of the
following diagrams:
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Based on the above scheme, one may infer that neutrinos masses are arranged according to the possible
pattern:

It is also instructive to note that quarks and charged leptons follow a different period doubling path. To this
end, let us organize the charged lepton and quark masses in a collection of triplets, that is

ml¼: ½me ml ms �; mq¼:
mu md

mc ms

mt mb

2
64

3
75 ð28Þ

It can be seen that the mass scaling for adjacent quarks stays constant within either one of the triplets (u,c, t)
or (d, s,b), whereas the mass scaling for charged leptons varies as a geometric series in d2 within the triplet
(e,l,s). This finding points out toward a symmetry breaking mechanism that segregates lepton and quark
phases in the process of cooling from the far ultraviolet region of field theory to the low-energy region of SM.

9. Concluding remarks

We have argued that fractional dynamics represents an analytic framework suitable for the description of
physical phenomena that are likely to arise in the TeV realm of particle physics. Unlike conventional quantum
field theory, fractional dynamics describes far-from-equilibrium statistical processes that give rise to manifest
scale invariance, non-local correlations and extensive symmetry breaking. Using fractional dynamics and the
benchmark example of complex-scalar field theory, we have explored the potential spectrum of phenomena
that may to emerge beyond the energy range of SM. Based on this framework, we have shown that,
near the asymptotic boundary of field theory, (a) gauge bosons and fermions become unified through a

Table 1
Fermion masses and coupling ratios

Scaling ratio 2l�1 Experimental value Estimated value

mu/mc 4 3.365 · 10�3 2.104 · 10�3

mc/mt 4 3.689 · 10�3 2.104 · 10�3

md/ms 2 0.052 0.046
ms/mb 2 0.028 0.046
me/ml 4 4.745 · 10�3 2.104 · 10�3

ml/ms 2 0.061 0.046
(aEM/aW)2 2 0.045 0.046
(aEM/as)

2 4 2.368 · 10�3 2.104 · 10�3
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fundamentally different mechanism than the one advocated by supersymmetry; (b) SSB and the emergence of
massive field theories occur as a result of critical behavior in continuous dimension; (c) particles develop a
family structure that is tied to the universal transition to chaos in unimodal maps. First-order predictions were
found to match reasonably well current experimental data. However, as pointed out in Section 1, our goal is
not to formulate a comprehensive solution to the host of open challenges surrounding SM. Concurrent
research efforts are needed to confirm or falsify these preliminary findings. In particular, the long-awaited
operation of the Large Hadron Collider and similar high-energy accelerator sites should soon produce exper-
imental evidence that backs or disproves our model.
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Abstract

Fractional dynamics offers a reliable tool for the study of far-from equilibrium processes that display scale-invariant
properties, dissipation and long-range correlations. This is particularly attractive when dealing with the complex dynamics
generated in the deep ultraviolet regime of quantum field theory. We analyze a simple scalar field Lagrangian using Caputo
derivatives and the approximation of low-level fractionality. Results may be extrapolated to more realistic field models and
suggest a series of surprising implications regarding phenomena that are expected to emerge beyond the range of the stan-
dard model for particle physics.
� 2006 Elsevier B.V. All rights reserved.

PACS: 11.10.Ef; 11.30.Na; 12.10.�g; 12.60.�i
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1. Introduction

Fractional derivatives are an effective tool for describing the non-trivial behavior of complex phenomena
whose dynamics is far-from equilibrium and cannot be characterized using traditional analytic functions.
Often, this behavior is caused by coupling the underlying physical system to a reservoir of steep and highly
correlated fluctuations. Owing it to their manifest scale-invariant attributes, fractals and multi-fractals provide
a suitable framework for the study of a large class of non-analytic functions and fields [1,2]. For example, frac-
tal geometry can be successfully associated with random walk models (fractional Brownian motion) or with
the onset of criticality in statistical physics and fluid dynamics (phase transitions in spin clusters and fully
developed turbulence). Recent years have demonstrated that fractional dynamics provides a natural frame-
work for mapping out the evolution in fractal environments and modeling the physics of systems having
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multiple scales [1,3–8]. It is for this reason that fractional dynamics is also beneficial when exploring the rich
spectrum of complex processes that is likely to arise in the deep ultraviolet regime of quantum field theory.
Taking advantage of this capability, we analyze in this work a simple scalar field Lagrangian using Caputo
derivatives and the approximation of low-level fractionality. Results may be extrapolated to more realistic
field models and suggest a series of surprising implications regarding phenomena that are expected to emerge
beyond the range of the standard model for particle physics.

We emphasize that our work has an introductory nature and, as such, it is not aimed to be either entirely
rigorous or formally complete. Additional research is needed to confirm, develop or disprove our preliminary
findings.

The paper is organized in the following way: Sections 2 and 3 introduce the main assumptions and rationale
for fractional dynamics in the deep ultraviolet domain of field theory. Section 4 highlights the link between
fractional dynamics and general relativity. Variational formulation of fractional dynamics as applied to field
theory is discussed in Section 5. A strategy for field unification in the TeV regime using fractional dimension is
investigated in the next two sections. The dynamic connection between fractional dimension and spin is elab-
orated upon in Section 8. Last section details how fractional dynamics may be used to motivate breaking of
parity and time-reversal symmetries. The paper concludes with a brief summary of main results and future
challenges.

2. Notation and conventions

(a) Einstein summation convention is applied throughout. Poincare indices are denoted by i, j,k = 0,1,2,3
and SU(2), SU(3) group indices by a and b, respectively.

(b) the analysis is carried out exclusively at the classical level. Suppression of quantum attributes and tran-
sition to classical behavior is the result of decoherence induced by steady exposure to large random fluc-
tuations [9,10]. A conceptual benefit of this ansatz is that field theory built on fractional dynamics is free
from any quantum or chiral anomalies.

(c) we follow the rationale of [3] and use in our work the left Caputo fractional derivative defined as

DauðxÞ¼: 1

Cðn� aÞ

Z x

0

uðnÞðsÞ
ðx� sÞaþ1�n ds ð1Þ

where n � 1 < a < n and u(n)(s) G dnu(s)/dsn.

(d) to avoid confusing (1) with the covariant derivative, the latter operator is generically represented as

DiuðxÞ¼: oiuðxÞ þ gaugeterms ð2Þ
(e) space–time variables and fields are suitably normalized as dimensionless observables.

3. Fractals and the deep ultraviolet region of field theory

It is generally believed that quantum field theory breaks down near the so-called Cohen–Kaplan threshold
of �100 TeV as a result of exposure to large vacuum fluctuations and strong-gravitational effects. No conve-
nient redefinition of observables is capable of turning off the dynamic contribution of these effects. For
instance, it is known that the zero-point vacuum energy diverges quadratically in the presence of gravitation.
Quantum field theory in Minkowski space–time discards the zero-point vacuum energy through the use of a
normal time ordering procedure [11]. Because vacuum energy is gravitating and couples to all other field ener-
gies present at the quantum level, cancellation of the zero-point term is no longer possible when gravitational
effects are significant. Our previous considerations suggest, in this context, that fractal geometry and fractional
dynamics assume a leading role in the description of TeV physics [12,13]. For reasons that will become clear
later on, we briefly review below the concept of fractional dimension and its relationship to the index of frac-

tional differentiation.
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A prototype of a continuous but nowhere differentiable field is the generalized Weierstrass function (GWF)

W ðxÞ¼:
X1

n¼�1

ð1� eicnxÞei/n

cð2�DÞn ð3Þ

where x denotes the space coordinate, c > 1 and /n stands for a series of arbitrary phases [1]. The fractional
dimension of GWF is 1 < D < 2, or

½W ðxÞ� ¼ D ð4Þ
and is considered to be a measure of its degree of irregularity. It can be shown that the correlation function of
GWF is represented by

CðsÞ¼: W ðxþ sÞ � W ðxÞj j2
D E

/
� s2ð2�DÞ ð5Þ

This expression indicates that, in addition to being a measure of irregularity, D determines the range over

which field correlations extend. In the above, the average is taken over an ensemble of realizations of /n phases
that is uniformly distributed over the interval (0, 2p). Carrying out a fractional derivation on GWF with the
help of the Caputo operator (1), has the effect of increasing the fractional dimension D to D 0 according to

D0 ¼ ½DaW ðxÞ� ¼ ½W ðxÞ� þ a ¼ Dþ a ð6Þ
It is apparent from (6) that the index of fractional differentiation a is equivalent to a linear shift in fractional
dimension, i.e. a = D 0 � D = DD.

Fractal geometry of the underlying space–time manifold may be introduced by analogy with these defini-
tions. In particular, space–time may be regarded as a fractal four-vector whereby each component xi,
i = 0,1,2,3 represents a GWF. For instance we write, in parametric form

xi¼:
X1

n¼�1

ð1� eicnsÞei/n

cð2�diÞn ð7Þ

where di are fractional dimensions assigned to each coordinate. In this case, the index of fractional differen-
tiation gets upgraded to the four-vector ai = d 0i � di = Ddi.

4. Fractional dynamics and classical gravity

Consider a model describing the dynamics of a scalar field u(x) G u(xi) embedded in 3 + 1 Euclidean
space–time. The generic Lagrangian associated with this model is given by

Lðu; ouÞ¼: gijoiuoju� UðuÞ ¼ ðouÞ2 � UðuÞ ð8Þ
Here, the Minkowski metric gij has signature (+,�,�,�) so that g00

G +1, U(u) represents the potential en-
ergy density and

ðouÞ2¼: oiuoiu ¼ ðou=ox0Þ2 �
X

k

ðou=oxkÞ2 ð9Þ

for k = 1,2,3. Assuming that the field dynamics has low-level fractionality, we may use the so-called e-expan-
sion to perform the transition from first-order to Caputo derivatives of order a G 1 � e according to the pre-
scription [3]

D1�euðxÞ ¼ ouðxÞ þ eD1uðxÞ

D1uðxÞ¼: ouð0Þ ln jxj þ couðxÞ þ
Z x

0

o
2uðsÞ ln jx� sjds

ð10Þ

where c stands for the Euler constant and ex� 1. By analogy with the definition of the Lipschitz–Hölder expo-
nent [14,15], we turn our attention to the most general case where the fractional index e represents a locally de-
fined function of space–time coordinates. In addition, we assume that the fractional index may be expressed
either as a contravariant ei(x) or a covariant ei(x) four-vector. This motivates us to formally extend (10) to
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D1�eiðxÞuðxÞ ¼ oiuðxÞ þ eiðxÞDi
1uðxÞ

Di
1uðxÞ¼

:
o

iuð0Þ ln jxj þ coiuðxÞ þ
Z x

0

ðo2ÞiuðsÞ ln jx� sjds

D1�eiðxÞuðxÞ ¼ oiuðxÞ þ eiðxÞD1;iuðxÞ

D1;iuðxÞ¼: oiuð0Þ ln jxj þ coiuðxÞ þ
Z x

0

ðo2ÞiuðsÞ ln jx� sjds

ð11Þ

By analogy with the standard notation for integer-order operators, the first couple of fractional derivatives are
contravariant whereas the second couple denotes covariant derivatives. On this basis, the most straightfor-
ward generalization of (8) on account of (11) gives

Lðu;DuÞ¼: D1�eiðxÞuD1�eiðxÞu� UðuÞ ð12Þ

To further simplify calculations we set

oiuð0Þ ¼ oiuð0Þ ¼ o2;iuðxÞ ¼ o2;iuðxÞ ¼ 0 ð13Þ

Replacing (11) in (12) we obtain

Lðu; ouÞ ¼ gi
i;eðxÞoiuo

iu� UðuÞ þ Oðe2Þ ð14Þ

in which the metric coefficients are defined as

gi
i;eðxÞ¼

:
1þ c½eiðxÞ þ eiðxÞ� ð15Þ

We are led to conclude that the effect of low-order fractional derivatives is to transform the Minkowski metric
into a Riemann metric determined by gi

i;eðxÞ. Stated differently, enabling the original Lagrangian to contain
fractional derivatives is physically equivalent to embedding the field in non-Euclidean space–time. This finding
is consistent with ideas developed in [12,13].

An important observation is now in order. As (5) indicates, the fractional index ei(x) defines the range of
field correlations in space and time. Fractional dynamics is essentially a non-local theory whereby phenomena
evolve on multiple scales that are coupled to each other [1,12]. It is precisely this scale coupling that makes the
metric field gi

i;eðxÞ a self-interacting entity and justifies its deep connection to general relativity and the physics
of classical gravitation.

Regarding (15), we note that cartesian frames of references are characterized by ei(x) = ei(x). We also note
that (15) reduces to the standard Minkowki metric in two distinct cases, i.e. (a) vanishing fractional index,
ei(x) = ei(x) = 0, (b) anti-symmetric components of the fractional index, that is ei(x) = �ei(x).

5. Fractional dynamics and the action principle

To further carry out our analysis it is convenient to introduce the following hypotheses:

(a) fractional index derives from a locally defined potential function, that is

eiðxÞ ¼ oinðxÞ; eiðxÞ ¼ oinðxÞ ð16Þ
(b) (14) is considered a Lagrangian depending on two independent scalar fields embedded in 3 + 1 space–

time, namely L G L(oin,u,ou). The action functional is then

S½n;u�¼:
Z

M
Lðoin;u; ouÞdx ð17Þ

from which the field equations follow as a result of Hamilton’s principle.
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6. Emergence of field charges and gauge-free theories

An intrinsic variation of field variables that does not involve any coordinate transformation is given by

dxi ¼ 0; du ¼ uðxÞ � uðxÞ; dniðxÞ ¼ niðxÞ � niðxÞ ð18Þ

The conserved four-vector current corresponding to this variation takes the form [16,17]

ji ¼ oL
oei

dniðxÞ þ oL

oðoiuÞ
du ¼ 2c½oiuo

iudni þ eioiudu� ð19Þ

such that oiji = 0. In very broad terms, this relationship asserts that ei(x) gives rise to a supplementary contri-
bution to the conserved four-vector current generated from internal field symmetries. As a result and as the
next section shows, the existence of internal charges of field theory (such as electric charge, color, weak isospin
as well as compensating gauge fields) may be interpreted as a direct manifestation of fractional dynamics.

In particular, let us consider a local gauge transformation that is applied to both fields u(x) and ni(x), that is

duðxÞ¼: oKðxÞ
ox

; dniðxÞ¼: oXiðxÞ
ox

ð20Þ

where K(x) and Xi(x) are arbitrary real functions. We thus obtain

ji ¼ 2c oiuoiu
oXiðxÞ

ox
þ eioiu

oKðxÞ
ox

� �
ð21Þ

indicating that, in order to secure a vanishing divergence for the current (19), the contribution of the first
gauge term in (21) is automatically balanced out by the contribution of the second term. It is seen that, in
contrast with standard formulation of relativistic quantum field theory, invariance under local gauge transfor-
mations in fractional dynamics may be accomplished without adding compensating gauge fields to the Lagrang-

ian. This key observation is in line with the framework discussed in [13,18], and suggests a natural mechanism
for field unification beyond the standard model of particle physics. In the next section we introduce the basis
for this unification program.

7. Asymptotic unification of classical gravity with gauge interactions

Refer again to (10) and (11). To streamline the derivation and capture the key point of the argument, we
relax condition (13) and re-write (11) as

D1�eiðxÞuðxÞ ¼ oiuðxÞ þ eiðxÞDi
1uðxÞ

Di
1uðxÞ �

Z x

0

ðo2ÞiuðsÞ ln jx� sjds
ð22Þ

under the explicit assumption that the field u(x) is a rapidly varying function and

oiuð0Þ ln jxj þ coiuðxÞ �
Z x

0

ðo2ÞiuðsÞ ln jx� sjds ð23Þ

Higher order derivatives based on the e-expansion may be formulated in analogous way. For instance,

D2�eiðxÞuðxÞ ¼ ðo2ÞiuðxÞ þ eiðxÞDi
2uðxÞ ð24Þ

where

Di
2uðxÞ �

Z x

0

ðo3ÞiuðsÞ ln jx� sjds

ðo2Þiuð0Þ ln jxj þ cðo2ÞiuðxÞ �
Z x

0

ðo3ÞiuðsÞ ln jx� sjds
ð25Þ
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Furthermore, for ultra-short space–time intervals x� 1 it is convenient to use the following approximations

Di
1uðxÞ � x ln

jxj
2
ðo2Þiuðx

2
Þ � QðxÞðo2ÞiuðxÞ

Di
2uðxÞ � QðxÞðo3ÞiuðxÞ

ð26Þ

in which

QðxÞ¼: x ln jxj
4

ð27Þ

Replacing (26) in (22) we obtain, in operator language,

D1�eiðxÞ ¼ o
i � eiðxÞQðxÞD2�eiðxÞ þ ½eiðxÞQðxÞ�2ðo3Þi ð28Þ

Note that, due to the presence of the logarithm in the expression of Q(x), the product ei(x)Q(x) cannot be con-
sidered an infinitesimal quantity, that is, ei(x)Q(x) 5 O(e2).

It is straightforward to see that (28) may be recursively generalized on account of the relationship linking
D3�eiðxÞ to (o3)i. We obtain

D1�eiðxÞ ¼ oi � eiðxÞQðxÞD2�eiðxÞ þ ½eiðxÞQðxÞ�2D3�eiðxÞ � ½eiðxÞQðxÞ�3D4�eiðxÞ þ � � � ð29Þ

The previous section has shown that the effect of fractional operators is to generate a gauge-free theory by
discarding fields whose function is to maintain local gauge invariance. On this basis, one can assert that there
is no physical distinction between (29) and the covariant derivative operators of relativistic quantum field the-
ory, briefly discussed in Appendix B. We may therefore perform a term by term identification of (29) and (B.1)
to arrive at the following set of operational relations

i

i

i

ð30Þ

Since eiðxÞ � ½gi
i;eðxÞ � 1� according to (15), the four-vector ei(x) represents the deviation from the Minkowski

metric of the equivalent gravitational field gi
i;eðxÞ induced by fractional dynamics. It follows that (30) provides

the motivation for the asymptotic unification of classical gravity with the combined SU(3) · SU(2) · U(1) gauge
symmetry of the standard model for particle physics. In different terms, (30) suggests that the three gauge groups
of the standard model break out from the topological concept of fractional dimension di that was introduced in
Section 1.

8. Fractional dynamics and the physical origin of spin

It is well known that spin represents a quantum mechanical observable that has no classical analogue. The
object of this section is to show that the concept of spin and the concept of fractional dimension are closely
related.

A good starting point is (14) from which field equations may derived on the assumption that ei(x) is an inde-
pendent four-vector field and O(e2) terms may be ignored. We find

oiðoiuoiuÞ ¼ 0

o
i oL

oðoiuÞ

� �
þ oU

ou
¼ 0

ð31Þ
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It follows that the energy-momentum tensor is defined by

T ij ¼ oL
oei

ej þ oL

oðoiuÞ
oju� Ldij ð32Þ

or, taking into account (14),

T ij ¼ eT ij þ coiuoiu½ej � 2eiðdij þ gijÞ� ð33Þ
Comparing to (A7) and recalling the scalar nature of field u, leads to the result that the second term of (33)
may be thought of as being generated by an intrinsic spin variable. In different words, we may establish the
following formal connection in reference to Appendix A

coiuoiu½ej � 2eiðdij þ gijÞ� () okf ikj ð34Þ
where fikj represents the spin contribution to the canonical energy-momentum tensor.

It is apparent from these considerations that fractional dynamics has the effect of turning a scalar field into
a spinor field. From a phenomenological standpoint and on account of Noether’s theorem, one can go further
and infer that spin is an observable that may be interpreted as the conserved charge associated with the local var-

iation of fractal dimension ei(x). More generally, since ei(x) is a continuous function of coordinates, it can be
stated that (34) extends the ordinary half-integer or integer spins to a continuous spectrum of eigenvalues. A
similar scenario is discussed in [12,13] in relation to the onset of complexity within the TeV regime of field
theory.

We wish to elaborate on this last point in more detail. Consider again the conserved four-vector current (19)
and impose an internal variation on ei(x) that does not involve any change of coordinates or field u(x)

dxi ¼ 0; du ¼ 0; dniðxÞ¼: niðxÞ � niðxÞ ð35Þ
According to the general theory of internal symmetries in Lagrangian field models, dei(x) takes the form

dniðxÞ ¼ ihe;iX iniðxÞ ð36Þ
where he,i stands for an infinitesimal rotation angle in parameter space and Xi denote the set of linearly inde-
pendent generators associated with this rotation [17]. It can be shown that Xi satisfy Lie algebra, that is

½X i;X j� ¼ icijkX k ð37Þ
in which cijk represent the structure constants of the Lie group. The conserved Noether current generated from
(19) is given by

ji ¼ oL
oei

dniðxÞ ¼ oL
oei

ihe;iX iniðxÞ ð38Þ

Thus, up to some multiplicative constant factors, we obtain

ji ¼ 2coiuoiudniðxÞ ffi X iniðxÞoiuoiu ð39Þ
subject to the continuity condition oiji = 0. Taking into account that oi(oiuoiu) = 0 yields

oiji ¼ 0) oi½X iniðxÞ� ¼ 0 ð40Þ
which implies thatZ

XM

X 0n0ðxÞd3x ¼ const: ð41Þ

where XM designates the spatial region of the integration domain. On the basis of previous discussion, we
interpret the invariant charge (41) as temporal component of the four-dimensional spin current Xini(x).

To summarize this section, we conclude that invariance of the action functional under a continuous vari-
ation of space–time dimension leads to the emergence of a conserved charge, which we identify with spin. The
crucial ingredient in this conjecture is that ni(x) is a continuous function, enabling infinitesimal transformations
of space–time dimension. In contrast with the basic premise of supersymmetry and related dynamic models
dealing with discrete spin transformations, this finding points to a fundamentally different route to boson–fer-
mion unification [12,13,18].
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9. Breaking of parity and time-reversal symmetries

Invariance of field equations to space and time reflections is well established in classical and quantum the-
ory. In light of this fact, parity non-conservation and breaking of the time-reversal symmetry in weak inter-
actions and kaon physics, respectively, are regarded as anomalies for which the standard model offers no
explanation [19,20]. The purpose of this section is to suggest that fractional dynamics may provide important
insights into the physical origin of these anomalies. Following Section 3, our underlying premise is that com-
plexity becomes relevant in the ultra-short distance regime of both weak interaction and kaon decay channels.
For the sake of concision and simplicity, here we restrict the discussion to parity and employ the notation
x G xk, k = 1,2,3.

Parity acts as a unitary operator in classical field theory [11,19]. Its action is represented by

PgðxÞ¼: gð�xÞ ð42Þ
Consider next (1) and set n = 1 and a = 1 � e, with ei(x) = ei(x) = e. Hence

D1�egðxÞ¼: 1

CðeÞ

Z x

0

gð1ÞðxÞ
ðx� sÞ1�e ds ð43Þ

such that

P ½D1�egðxÞ� ¼: P ½D1�e�P ½gðxÞ� ¼ P ½D1�e�gð�xÞ ð44Þ
or

P ½D1�e�gð�xÞ ¼ ½ð�1Þe�1�
CðeÞ

Z ð�xÞ

0

gð1Þð�sÞ
ðxþ sÞ1�e ds ð45Þ

where

ð�1Þe�1 ¼ exp½ipðe� 1Þ� ð46Þ
On the other hand,

D1�e½PgðxÞ� ¼ D1�egð�xÞ ¼ 1

CðeÞ

Z x

0

gð1Þð�sÞ
ðx� sÞ1�e ds ð47Þ

It is seen from (45) and (46) that the effect of parity operator P on the Caputo derivative is to produce a frac-
tional shift in phase. This phase-shift is proportional to the index e and reduces to an integer when the dynam-
ics becomes classical, that is, in the limit e! 0. As it is known, parity and first-order derivative operators anti-
commute in the classical limit, that is,

fP ; oggðxÞ ¼ P ½ogðxÞ� þ o½PgðxÞ� ¼ 0 ð48Þ
In contrast, P no longer anti-commutes with the fractional derivative operator for e 5 0 and a distinction is
made between the ‘‘left’’ and ‘‘right’’ directions. In different words,

fP ;D1�eggðxÞ 6¼ 0 ð49Þ
Following the same line of arguments and using (12), parity and Hamiltonian may be shown to become non-
commuting operators in the fractional dynamics regime, i.e.

½P ;H 1�e�gðxÞ¼: ðPH 1�e � H 1�eP ÞgðxÞ 6¼ 0 ð50Þ

10. Summary and conclusions

The description of complex dynamics in the TeV regime of field theory warrants the transition from ordin-
ary calculus on smooth manifolds to fractional differentiation and integration. We have suggested that this
transition has important implications regarding phenomena that are anticipated beyond the energy range
of the standard model for particle physics. In particular, we have argued that:
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(a) fractional dynamics in Minkowski space–time is equivalent to field theory in curved space–time. This
finding points out to a natural mapping of gravity onto the fractal topology of space–time in to the deep
ultraviolet region of field theory.

(b) the three gauge groups of the standard model, as well as the spin observable, are rooted in the topolog-
ical concept of fractional dimension.

(c) fractional dynamics is the underlying source of parity non-conservation in weak interactions and of the
breaking of time-reversal invariance in processes involving neutral kaons.

Follow-up studies may be devoted to understanding the relationship between predictions and experimental
data, the link between the fractional phase-shift (46) and anyon statistics [13,21] and the role of multi-fractal
measures in the future development of field models.

Appendix A

For reader’s convenience, we survey below some results of Lagrangian field theory that are relevant to our
work. Following [16,17], consider a generic classical field described by a set of m = 1,2, . . . ,N real or complex
functions gm(x). The field equations stemming from the action principle read

oL
ogm
� o

oxi

oL

oðoigmÞ

� �
¼ 0 ðA:1Þ

where L(gm(x),oigm(x), xi) stands for the Lagrangian density. The infinitesimal Lorentz transformation of
coordinates is given by

x0¼: eLx) x0i ¼ xi þ xi
jx

j þ ai ðA:2Þ
where ai is a constant translation vector and xij = �xji a constant anti-symmetric tensor describing rotations.
In the most general case, the field components respond to the Lorentz transformation (A.2) as

g0mðx0Þ ¼ ½dm
n þ Km

n ðeLÞ�gnðxÞ ðA:3Þ
in which

Km
n ¼ 0 if gmðxÞ is a scalar field

ð1þ Km
n Þ ¼ eLm

n if gmðxÞ is a vector field

ð1þ Km
n Þ ¼ SðeLÞmn if gmðxÞ is a spinor field

ðA:4Þ

Here, eLm
n acts as a Lorentz transformation operator and SðeLÞmn the general spin representation of the Lorentz

group. It can be shown that

Km
n ¼

1

2
Smij

n xij ðA:5Þ

in which Smij
n denotes the spin tensor. Under these circumstances

Smij
n ¼ 0 if gmðxÞ is a scalar field

Smij
n ¼ gmigj

n � gmjgi
n if gmðxÞ is a vector field

Smij
n ¼

1

4
ðcicj � cjciÞmn if gmðxÞ is a four-component spinor field

ðA:6Þ

where ci is the set of Dirac matrices [11,22]. We obtain for the energy-momentum tensor of the field

T ij ¼ eT ij � o

oxk
f ikj ¼ oL

oðoigmÞ
ojgm � Ldij

� �
� o

oxk
f ikj ðA:7Þ

Here, dij is the Kronecker symbol and the spin term is defined as

f ikl ¼ 1

2

oL

oðoigmÞ
Smkl

n gn ðA:8Þ
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In particular, the spin contribution vanishes if gm(x) represents a scalar field and the energy-momentum tensor
assumes the canonical form

eT ij ¼ oL

oðoigmÞ
ojgm � Lgij ðA:9Þ

Appendix B

A Lie group is a continuous group whose elements can be parameterized by a finite number of parameters.
Of particular interest in relativistic quantum field theory are the Lie groups associated with the principle of
gauge invariance, the so-called SU(n) groups. Elements of the SU(n) group are n · n unitary matrices with unit
determinant. There are n2 � 1 generators of the SU(n) group represented by n · n traceless and Hermitian
matrices whose elements satisfy the commutation relations of the Lie algebra.

The principle of gauge invariance demands that the action functional is left unchanged under global and
local internal field transformations that generate three fundamental symmetries. These are the SU(2) · U(1)
symmetry of electroweak interaction and the SU(3) symmetry of strong interaction. The conserved global
charges associated with these symmetries are the electric charge, the weak isospin and the QCD color, respec-
tively. The non-abelian spin-1 fields that are introduced to secure local gauge invariance of the theory are the
electromagnetic field, as well as the vector boson and gluon fields of the weak and strong interactions. As a
result of demanding local gauge invariance, all ordinary derivatives entering the Lagrangian are upgraded
to the so-called covariant derivatives including the set of gauge fields described above. The full covariant deriv-
ative operator of the standard model is written as [22]

Di¼: oi � ig1

Y
2

Bi � ig2

sa

2
W i

a � ig3

kb

2
Gi

b ðB:1Þ

Here, g1, g2 and g3 are the electroweak and strong coupling constants, Y is the generator of the U(1) group, sa

are Pauli matrices that generate the SU(2) group and kb the generators of the SU(3) group. Also, W i
a and Gi

b

stand for the weak and gluon fields, a = 1,2,3 is the SU(2) group index and b = 1,2,3, . . . , 8 the SU(3) group
index.
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Abstract

The gauge hierarchy problem in particle physics refers to the large numerical disparity between the value of the

Planck mass (MPl ’ 1:22� 1019 GeV) and the mass scale of the electroweak interaction (MEW � 102 GeV). Explaining

the hierarchy paradox has been attempted so far in quantum field models based on supersymmetry or higher dimen-

sional space–time with a large number of extra dimensions (brane theories). Despite several years of experimental

search, there is currently no validation for either one of these models. We approach the hierarchy paradox using the

methodology of fractal operators in four-dimensional space–time. It is found that departure from the inverse-square

gravity in the high-energy regime emerges naturally from the fractional Helmholtz equation and offers a simple reso-

lution to the problem. Our work makes an explicit connection between the hierarchy problem and Cantorian geometry

of space–time on energy scales comparable to the Planck mass.

� 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Relativistic quantum field theory is considered an effective representation of nature at low energies. It is generally

accepted that any attempt to build a realistic field framework describing physics on large energy scales must account for

the dynamic effect of the vacuum and for the strong gravitational effects induced by its fluctuations [27,23,29]. Grav-

itational stability of the vacuum sets a limit on the validity of any quantum field theory above a threshold energy scale

[29,30]. Moreover, gravitationally bound states having masses of order �1019 GeV can be formed, in principle, on or

below the Planck scale [5]. It has become increasingly clear in recent years that the adequate description of complex

dynamics associated with generic random fluctuations demands use of fractal operators and fractional calculus [1–4].

From a mathematical physics viewpoint, introduction of this class of operators is closely related to a broad spectrum of

topics ranging from analytic continuation [7] and non-local field theory [14] to generalized functions [15] and Levy

stable probability distributions [16].

The gauge hierarchy problem in particle physics refers to the large numerical disparity between the value of the

Planck mass (MPl ’ 1:22� 1019 GeV) and the mass scale of the electroweak interaction (MEW � 102 GeV). Explaining

the hierarchy paradox has been attempted in quantum field models based on supersymmetry or higher dimensional

space–time with a large number of extra dimensions (brane theories). At the present time there is no empirical con-

firmation for either supersymmetry or brane theory. For example, experimental searches for departures from New-

tonian gravity are focused on measuring the distance separating the branes, which is sought to be on the order of

millimeters or less. No deviation from the inverse-square law has been found at distances as small as a tenth of a

millimeter [19,20]. In light of these results, it appears that searching for alternate mechanisms that solve the gauge
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hierarchy problem is a worthwhile endeavor. We handle the hierarchy paradox using the methodology of fractal

operators in four-dimensional space–time. It is found that departure from the inverse-square gravity in the high-energy

regime emerges naturally from the fractional Helmholtz equation and offers a simple resolution to the problem. Results

rely on the explicit connection between the hierarchy problem and Cantorian geometry of space–time on energy scales

comparable to the Planck mass [17].

The plan of the paper is as follows: Section 2 introduces the gauge hierarchy problem. Models founded in higher

dimensional space–time are briefly discussed in Section 3. Fractional solution of the Helmholtz equation is developed in

Section 4. A link to fractional dynamics of the scalar field is established in Section 5. Scaling of the effective Planck mass

and of the effective gravity coupling is the topic of Sections 6 and 7. Section 8 links results to the Cantorian space–time

geometry. Concluding remarks are presented in Section 9.

2. The Planck and the gauge hierarchy problem

Let r be the distance at which the gravitational potential energy of a classical scalar particle of mass M equals rest its

energy. Thus

G
M2

r
¼ Mc2 ð1Þ

where G stands for Newton’s constant. If r is taken to represent the Compton wavelength of the particle, that is

r ¼ �h
Mc

ð2Þ

eliminating r and solving for M gives the Plank mass [6]

MPl ¼ ð�hcG�1Þ1=2 ’ 1:22� 1019 GeV ð3Þ

At the same time, the electroweak interaction scale is set by either the vector boson mass (MEW ¼ MW � 80 GeV) or the

Fermi constant (MEW ¼ G�1=2
F � 290 GeV) [5]. The gauge hierarchy problem is defined by the large ratio of the Planck

mass to the electroweak mass scale, which is on the order of 1017.

3. Models with large or warped extra dimensions

Large extra spatio-temporal dimensions have been introduced in recent years as a possible solution to the hierarchy

problem [9–13]. This scenario is based on extending space–time dimensionality to D ¼ 4þ n, where gravity propagates

in the extra dimensional bulk ðn � 1Þ and the Standard Model fields are confined to the usual 3+ 1 space–time referred

to as a ‘‘3-brane’’. According to this mechanism, the weakness of gravity in our four-dimensional space–time can be

attributed to the spreading of gravity force lines into extra dimensions. This pervasive character of gravity enables

coupling of the four dimensional continuum to neighboring branes. If the characteristic volume associated with the n-
dimensional space is denoted by Rn, it can be shown that the effective four-dimensional Planck mass ðMPlÞ is related to

the Planck mass in D dimensions ðMSÞ via
M2

Pl � RnMnþ2
S ð4Þ

While the mechanism of large extra dimensions resolves the disparity between MPl and MEW, it introduces a new

hierarchy between the energy scale associated with extra-dimensional space ðl � 1=RÞ and MEW [11]. An alternative is

provided by the model of warped extra dimensions [11,12]. In this conjecture, the four-dimensional metric is multiplied

by an exponential ‘‘warp’’ factor that is a rapidly changing function of an additional extra dimension. Ramifications of

this scenario are discussed in [12].

We now proceed with the development of our arguments. Based on the introductory remarks, a logical starting point

is fractional generalization of the scalar equation describing field propagation in arbitrary dimensions [8]. Natural units

are assumed throughout the remainder of the paper ð�h ¼ c ¼ 1Þ.

4. Fractional representation of the Helmholtz equation

Consider a classical scalar field uð~r; tÞ of mass m0 where~r ¼ fxjg, j ¼ 1,2,3. It satisfies the well-known wave equation

[21,24]
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o2

ot2

��
�r2

�
þ m2

0

�
uð~r; tÞ ¼ 0 ð5Þ

Eq. (5) is otherwise known as the Klein–Gordon equation describing the space–time evolution of a free spinless particle

of mass m0. Performing the operator substitution

E ! i
o

ot
; ~p ! �ir ð6Þ

in (5) retrieves the relativistic dispersion relation

E2 ¼~p2 þ m2
0 ð7Þ

It is customary to use a dimensionless representation of (5) and (7). Dividing each side of these equations by an

arbitrary mass scale M0 and introducing the normalization prescription

~r0 ¼ M0~r; t0 ¼ M0t;
o

ot0
¼ 1

M0

o

ot
;

o

ox0j
¼ 1

M0

o

oxj
; r0 ¼

o

ox0j

( )
ð8Þ

leads to

o2

oðt0Þ2

 "
�r2

0

!
þ ðm0

0Þ
2

#
uðr0

!
; tÞ ¼ 0

ðE0Þ2 ¼ ð~p0Þ2 þ ðm0
0Þ

2

ð9Þ

in which

m0
0 ¼

m0

M0

ð10Þ

The Helmholtz equation is the time-independent version of (5) and (9). The Green function of the dimensionless

Helmholtz equation satisfies [8,21]

r2
0Gð~r0;m0

0Þ � ðm0
0Þ

2Gð~r0;m0
0Þ ¼ �dð~r0Þ ð11Þ

where

dð~r0Þ ¼ dðx01Þdðx02Þdðx03Þ ð12Þ

is the three-dimensional delta function representing a source-point located at the origin of the coordinate system. The

explicit form of the Green function is

Gðr0;m0
0Þ ¼

expð�m0
0r

0Þ
4pr0

ð13Þ

The high-energy regime implies that r0 is taken well inside the effective range of the source ðr0 � 1=m0
0Þ. In this case (13)

decays as

Gðr0;m0
0Þ

m0
0
r0�1

� ðr0Þ�1 ð14Þ

It is well known that, since the Green function relates to the gravitational potential created by the delta source and the

magnitude of a conservative force is the gradient of that potential, the above framework is the basis for the inverse-

square law of classical field theory. We recall that both the delta and potential functions depend on the dimensionality

of the embedding space; explicit forms for the one-dimensional, two-dimensional and higher-dimensional cases are

known and well documented in the literature [8,25].

Motivated by the growing evidence for complexity in field theory, we now ask the following question: What happens

if the geometry of the delta source is generalized from integer-dimensional to fractal? Stated differently, What is the

form taken by the Green function when the delta source is effectively an intermediate between a three-dimensional and a

four-dimensional distribution? The answer to this question is reported in [8] where it is shown that, if the embedding

space is N -dimensional ðj ¼ 1; 2; . . . ;NÞ, the generalized form of the delta function is
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dðx01; x02; . . . ; x0N�1; x
0
N Þ ¼

dðx01Þdðx02Þ � � � dðx0N�1Þðx0N Þ
N�f�1

CðN � f Þ ð15Þ

In the above expression f represents a real number between N � 1 and N

N � 1 < f < N ð16Þ

defining the intermediate space dimension. Well inside the effective range of the source ððr0ÞN�1 � 1=m0
0Þ, it is found that

the corresponding Green function decays as

Gf ðx01; x02 . . . x0N�1;m
0
0Þ

m0
0
ðr0ÞN�1�1

� ðr0Þ
1�f
2

N�1 ð17Þ

where

ðr0ÞN�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx01Þ

2 þ ðx02Þ
2 þ � � � þ ðx0N�1Þ

2

q
ð18Þ

It follows that the fractional gravitational potential in free three-dimensional space is given by

Gf ðx01; x02; x03;m0
0Þ

m0
0
ðr0Þ3�1

� ðr0Þ
1�f
2

3 ð19Þ

Let Meff ;Pl denote the effective Planck mass representing the generalization of MPl in the context provided by fractional

Green function (19). As before, let M0 denote the reference mass scale. By analogy with (1) we have

ðGM2
0 Þ

M
M0

� �2
ðr0Þ

1�f
2

3

¼ M
M0

¼ M0 ð20Þ

or, taking into account (3) and solving for the effective Planck mass ðM ¼ Meff ;PlÞ

M0
eff ;Pl ¼ ðM0

PlÞ
2ðr0Þ

1�f
2

3 ð21Þ

in which

M0
eff ;Pl ¼

Meff ;Pl

M0

M0
Pl ¼

MPl

M0

ð22Þ

In closing this section, we recall that the left-hand side of (1) corresponds to the inverse-square law of classical potential

theory in three-dimensional space. It can be shown that the inverse-square law is rooted in the rotational invariance of

the three-dimensional space at low energy scales [21]. In contrast, the non-trivial nature of space–time in the high-

energy regime is expected to break the rotational symmetry of ordinary space and open the door for non-commutative

geometry [22,23]. In general, breaking the rotational symmetry of ordinary space amounts to upgrading the inverse-

square gravity to a power-law depending on a non-integer exponent.

5. Connection to fractional dynamics of the scalar field

As previously stated, physics on high-energy scales is characterized by large perturbations in momenta produced by

vacuum fluctuations and their strong gravitational effects. The erratic spectrum of fluctuations generates steady devi-

ations from the unitary time evolution of quantum mechanics and drives the transition from order to chaos. The onset

of Hamiltonian chaos transforms the smooth topology of classical phase-space into an irregular and highly fragmented

structure. Adequate modeling of this regime requires replacing the conventional differential operators of quantum

mechanics with fractal operators, as discussed in [1,18,26]. In this context, an additional key observation is that, due to

the environment-induced decoherence and suppression of interference, all particles and fields loose their quantum

memory and become classical objects [31,32].

In [18], a fractional generalization of the Klein–Gordon field theory expressed by (9) has been presented. To make

the paper self-contained and for reader’s convenience, we reiterate the main arguments here.
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It is known that the chaotic dynamics of Hamiltonian systems is conveniently described as a fractional diffusion

process [1,26]. The space–time flow of the scalar field uð~r; iÞ is encoded in a fractional generalization of the conventional

Klein–Gordon equation. The new equation depends on two non-integer exponents ða; bÞ describing the space and time

differentiation of the field, respectively. According to this prescription, the ordinary space and time differentiation

operators are extended to

o

ot
! ob

otb

o

ojxjj
! oa

ojxjja
ð23Þ

in which ob=otb is the Riemann–Liouville derivative of order 0 < b6 1 and oa=ojxjja is the Riesz derivative of order

0 < a6 2 operating on the space-symmetrical coordinate jxjj [26]. Bounding the intervals of the two exponents allows

the correct probabilistic interpretation of the field as a positive scalar.

Under these circumstances (9) may be extrapolated to

o2b

oðt0Þ2b

 "
�r2a

0

!
þ ðm0

0Þ
2

#
uðr0

!
; tÞ ¼ 0 ð24Þ

Proceeding by analogy with (6), we perform the generalized operator substitution:

Eb ! i
ob

oðt0Þb

paj ! �i
oa

ojx0j j
a

ð25Þ

which yields the fractional Klein–Gordon equation

½�E2b þ~p2a þ ðm0
0Þ

2� ¼ uðr0
!
; tÞ ¼ 0 ð26Þ

where

pa
!¼ fpaj g ð27Þ

The resulting dispersion relation

E2b ¼~p2a þ ðm0
0Þ

2 ð28Þ

is an obvious generalization of the ordinary relativistic dispersion corresponding to a ¼ b ¼ 1.

6. Scaling behavior of the effective Planck mass

We are now in a position to join the formalism outlined in (24)–(28) with the expression for the fractional Green

function (19). The exponent f (defined inside the interval ð3; 4Þ for three-dimensional space, i.e. 3 < f < 4Þ can be

mapped to the exponent a (defined inside (0,1)) by using the substitution

a ¼ 4� f ð29Þ

Analysis of dimensionless units employed in (25) and (28) yields the following set of correspondence relations

M0 ! Eb ! ob

oðt0Þb
! ðt0Þ�b

M0 ! pa ! Eb

paj !
oa

ojx0j j
a ! ðx0j Þ

�a ! ðr0Þ�a

ð30Þ

E. Goldfain / Chaos, Solitons and Fractals 22 (2004) 513–520 517



As a result, the normalized coordinate scales as

r0 ¼ ðr0Þ3 ¼ ðM0Þ�
1
a ð31Þ

which is the fractional generalization of the Compton wavelength (2) in the classical limit a ! 1. Substituting (31) in

(21) leads to a power-law scaling of the effective Planck mass assuming the form

M0
eff ;Pl ¼ ðM0

PlÞ
kðaÞ ð32Þ

with

kðaÞ ¼ 4a
aþ 3

ð33Þ

This is the main result of the paper. Two asymptotic cases exist:

(1) The approach to classical limit a ! 1 recovers the Planck mass as kð1Þ ! 1 and Meff ;Pl ! MPl.

(2) As a ! 0,
Meff;Pl

M0
! 1. Since the choice of mass scale M0 is arbitrary, the effective Planck mass can take any arbitrary

real value in fRþg. This finding is consistent with the physics of critical behavior near transition points where there

is a manifest loss of length scale and field correlations acquire an infinite range.

7. Scaling behavior of the effective gravity constant

Examination of (32) indicates that the effective gravity constant defined by

GeffðM0; aÞ ¼ ðMeff ;PlÞ�2 ¼ ðMPlÞ
�8a
aþ3ðM0Þ

6ða�1Þ
aþ3 ð34Þ

is no longer a universal constant, but a coupling strength depending on the dual choice of mass scale M0 and exponent a.
When a ! 1, one recovers Newton’s constant as

Geff
a!1

¼ G ¼ ðMPlÞ�2 ð35Þ

Fig. 1 shows the variation of GeffðM0; aÞ as function of M0 for a fixed a, namely a ¼ 0:236 (cf. next section). It is seen

that gravity becomes an asymptotically free theory relative to the mass scale M0. This is consistent with the behavior of

non-abelian gauge theories at high energies [21,24].

The variation of GeffðM0; aÞ as a function of a at a fixed mass scale M0 is illustrated in Fig. 2 where M0 was chosen to

coincide with proton mass (cf. next section). It is seen that gravity behaves as a non-asymptotically free field theory for

a ! 0, which may have significant implications for the gravitational stability of bound states in regions of the a-space
where the effective coupling is large.

Fig. 1.
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8. Connection to the geometry of Cantorian space–time

In what follows we use (34) to lower the numerical value of the effective Planck mass and suggest a simple solution to

the gauge hierarchy problem. As pointed out in [18], exponent a is found to be dependent on the geometrical attributes

of Cantorian space–time via

a ¼ hdci � 4 ¼ /3 ¼ 0:236068 ð36Þ

in which hdci is the expectation value for the Haussdorf dimension in E1 theory and / ¼
ffiffi
5

p
�1
2

is the golden mean [17,23].

If, using a standard procedure, we choose the reference mass to coincide with the proton mass ðM0 ¼ mprotonÞ [5,24], (34)
is solved by

Meff ;Pl ¼ 353:3 TeV

We conclude that Meff ;Pl has the same order of magnitude as the upper limit of the Cohen–Kaplan fundamental scale of

gravity, placed near 100 TeV. This scale is considered to set the threshold of validity for any quantum-field theoretical

description of nature [27,28].

9. Concluding remarks

A novel strategy for solving the gauge hierarchy problem has been presented. It is based on using fractal operators in

the Helmholtz equation of classical field theory. We have found that:

(a) Deviation from the inverse-square gravity occurs naturally on high-energy scales.

(b) The effective gravity coupling depends on both the mass scale M0 and the order of fractional differentiation in space

ðaÞ.
(c) The effective Planck mass may be lowered in the Cohen–Kaplan range by linking a to a key geometrical attribute of

Cantorian space–time, the golden mean /.
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Abstract

The standard model for high-energy physics (SM) describes fundamental interactions between subatomic particles
down to a distance scale on the order of 10�18 m. Despite its widespread acceptance, a consistent and comprehensive
understanding of SM parameters is missing. Starting from a less conventional standpoint, our work suggests that the spec-
trum of particle masses, gauge couplings and fermion mixing angles may be derived from the chaotic regime of the ren-
ormalization group flow. In particular, we argue that the observed hierarchies of standard model parameters amount
to a series of scaling ratios depending on the Feigenbaum constant. Leading order predictions are shown to agree well with
experimental data.
� 2006 Elsevier B.V. All rights reserved.

PACS: 11.10.Hi; 12.15.Ff; 12.60.�i; 12.90.+b

Keywords: Renormalization group flow; Period doubling bifurcations; Feigenbaum scaling; Standard model parameters

1. Introduction

The generation structure of quarks and leptons stands out as one of the most intriguing puzzles of the stan-
dard model for particle physics (SM). The conventional formulation of the SM requires 19 free input param-
eters, among which 12 can be expressed in terms of empirical mass eigenvalues [1]. In addition, there is a set of
four inputs determined by the so-called Cabibbo–Kobayashi–Maskawa (CKM) matrix whose structure
includes three quark-mixing angles and one CP phase [18,19]. The remaining three parameters are two gauge
couplings (a3,aem) and the strong CP phase. Recent experiments in neutrino physics have confirmed the exis-
tence of neutrino oscillations and masses and have subsequently triggered a host of challenging questions
[2–4]. There is a large body of proposed extensions of SM, each of them attempting to resolve some unsatis-
factory aspects of the theory while introducing new unknowns. In contrast with the line of thought pursued by
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these models, our work suggests that the spectrum of particle masses, gauge couplings and fermion mixing
angles may be derived from the chaotic behavior of the renormalization group (RG) flow. Although predictions
are found to match reasonably well experimental observations, we caution that our results are entirely preli-
minary and a concurrent analysis is needed to confirm or disprove their validity.

The standard procedure for investigating the high-energy domain of any effective field theory is to start
from the underlying RG flow equations, identify its fixed points and analyze the asymptotic flow of coupling
parameters in the basin of attraction of these points [5]. Taking an alternative approach, we treat the RG flow
equation as a generic iterated mapping and evaluate its chaotic regime after a large number of iteration cycles.
We conclude that the observed hierarchy of SM parameters amounts to a series of scaling ratios depending on
the Feigenbaum constant [27]. Since fermion mass scaling ratios and mixing matrices can be parameterized in
terms of the Cabibbo angle [6–8,28], this result supplies a natural connection between the Cabibbo angle and
the Feigenbaum constant. Moreover, it is found that the model can accommodate hypothetical generations of
both heavy and ultra-light fermions that are expected to emerge beyond the energy range of SM. A represen-
tative example in this regard is the fourth SM family neutrino whose detection is anticipated at future linear
colliders [9].

The paper is organized in the following way: Section 2 outlines the background of the RG flow equation
and derives the asymptotic link between the beta-function and Feigenbaum scaling for a generic effective field
theory. The emergence of a hierarchical pattern of observables based on this link is elaborated upon in Section
3 with specifics on SM hierarchies detailed in Section 4. The last three sections include a brief presentation of
future extensions, open questions and concluding remarks.

2. Beta-function and Feigenbaum scaling

Following the framework of RG transformations, all physical observables of an effective field theory can be
formulated in terms of a finite number of renormalized couplings [10]. These are defined at an arbitrary mass
scale l referred to as a ‘‘subtraction point’’ or ‘‘sliding scale’’. One key result of RG is that any change in the
renormalized correlation functions in response to a variation in l must be compensated by a corresponding
change in the renormalized couplings. The outcome of this conjecture is contained in the so-called Callan–
Symanzik equation, which reflects how all observables of the theory change (or ‘‘flow’’) with l. Beta-function
of the renormalization group flow is defined by the partial differential equation

b½gðlÞ�¼: l
ogðlÞ
ol

ð1Þ

The zeroes of the beta-function, generically called fixed points, are of particular interest in the theory of RG
flows. Knowledge of the fixed points enables the study of high and low-energy domains of the effective field
theory [10,11].

We proceed from these preliminary considerations by introducing the following set of working
assumptions:

1. The effective field theory contains a single coupling parameter g = g(l).
2. The asymptotic flow of the coupling parameter toward the fixed point g* reflects the approach to the high-

energy domain of field theory.
3. The phase transition associated with the flow g(l)! g* is an infinite-order phase transition.

The last two assumptions may be linked to framework of conformal field theories, which are considered
well suited for the description of high-energy physics [12–14]. A remarkable feature of infinite-order phase
transitions is that the correlation length n has an essential singularity at the critical coupling g* given by

n � expðAjg � g�j�rÞ ð2Þ

in which r is a critical exponent and A a constant. Such behavior develops when the coupling parameter has a
vanishing mass dimension at g* and the beta-function may be represented as a quadratic function of g [12–14]
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l
og
ol
¼ cg2 þOðg3Þ ð3Þ

where c is a real-valued coefficient. The discrete analogue of (3) reads

gnþ1 � gn ¼
cDl
l

g2
n þOðg3

nÞ ð4Þ

Here n is the iteration index and the subtraction point increment Dl represents a scalar fixed by resolution
requirements. Any realistic description of the RG flow in the high-energy domain must take into account sta-
tistical fluctuations stemming from the uncertainty principle. Because large fluctuations and non-equilibrium
microscopic processes dominate the physics on short time scales, the temporal resolution Dtn G tn+1 � tn is
expected to vary as the inverse of time measurement, i.e. Dtn � t�1

n . It follows that the dimensionless subtrac-
tion point entering (4) and defined as ~l¼: l=cDl acts as an autonomous control parameter. Following the on-
set of chaos in quadratic maps through period doubling bifurcations, it can be shown that the transition from
a period 2n super stable orbit to a period 2n+1 super stable orbit occurs for a geometrically spaced series of
control parameters given by [15]

~ln � ~l1 � d�n
2 ð5Þ

where 2n� 1 and where d2 G 4.669. . . is the Feigenbaum constant for the quadratic map. From the previous
discussion it can be inferred that ~l1 represents the fixed point of the ~ln series whose generic term is defined via

~ln¼:
l

cDln
� l

c
t�1
n ð6Þ

It is important to emphasize that (5) is frame-independent, in the sense that its form is not affected by changing
the subtraction point and its limit ~l0n ¼ s~ln, ~l01 ¼ s~l1 with s 2 {R}.

To streamline the derivation and without losing generality, we further assume that a plausible boundary
condition in (5) is ~l1 � 0. This ansatz may be justified by considering that the RG flow develops over suffi-
ciently large times (tn� 0).

The emergence of scaling (5) points out to an important result regarding the asymptotic form of the beta-
function. According to the guiding prescription of RG analysis, the evolution of the beta-function may be
studied through a sequence of renormalization steps consisting of iterated composition and rescaling opera-
tions [15,16]. Let ~bðgÞ designate the universal Feigenbaum–Cvitanovic function that satisfies the so-called ren-
ormalization equation

~bðgÞ¼: � a~b ~b
g
a

� �� �
ð7Þ

in which a G 2.5029. . . After a large number of iteration cycles (2n� 1), the renormalized beta-function
~bnðgÞ¼: ð�aÞnbð2

nÞ g
an ; ~ln

� �
approaches ~bðgÞ according to [15,16]

~bðgÞ ¼ lim
n!1
ð�aÞnbð2

nÞ g
an
; ~l1

� �
ð8Þ

The renormalized beta-function obeys the recursive relation

~bn�1ðgÞ¼: � a~bn
~bn

g
a

� �� �
ð9Þ

such that

~bnðgÞ � ~bðgÞ � d�n
2 hðgÞ ð10Þ

where h(g) is an analytic function. Moreover, since our focus is the coupling flow in the immediate neighbor-
hood of g*, where (g � g*) � O(e), we may reasonably assume that ~bðgÞ � OðeÞ. We arrive at

~bnðgÞ � d�n
2 hðgÞ ð11Þ

The above power-law behavior reveals the asymptotic connection between the renormalized beta-function, on
the one hand, and Feigenbaum constant on the other. Next sections explore the impact of this result on key
observables describing a typical field theoretic framework such as the electroweak model or QCD.
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3. Hierarchical pattern of observables

Let X be a generic observable of the effective field theory such as mass, gauge coupling or mixing angle.
Assuming that the dimension of X is d0, that is

½X� ¼ ½l�d0 ð12Þ
we may write, by dimensional analysis [17]

Xðl; gðlÞÞ ¼ ld0 fd0
ðgðlÞÞ ð13Þ

Constraining the function fd0
ðgðlÞÞ to be independent of the subtraction point yields

dXðl; gðlÞÞ
dl

¼ 0! fd0
ðgðlÞÞ � exp �d0

Z gðlÞ

g�

dg
~bðgÞ

 !
ð14Þ

On account of the RG interpretation previously developed, the dimensionless form of (13) may be written as

Xnð~ln; gð~lnÞÞ � ~ld0
n exp½�dn

2d0F ðgð~lnÞ; g�Þ� ð15Þ
with

F ðgð~lnÞ; g�Þ¼:
Z gð~lnÞ

g�

dg
hðgÞ ð16Þ

The integral (16) may be approximated around ~l1 � 0 as

F ðgð~lnÞ; g�Þ �
gð~lnÞ � g�

hðg�Þ � ~ln

og
o~ln
ð0Þ

h i
hðg�Þ ¼ d�n

2

og
o~ln
ð0Þ

h i
hðg�Þ ð17Þ

which implies that, for two arbitrary iteration indices,

Xnð~ln; gð~lnÞÞ
Xmð~lm; gð~lmÞÞ

� dðm�nÞd0

2 ð18Þ

We end this section by noting that d0 = 1 if the observable (13) refers to a mass parameter and d0 � O(e) if it
refers to a gauge coupling or a mixing angle. The latter property is a direct consequence of (2) which implies
that coupling charges behave as marginal parameters in the immediate neighborhood of g* [12,13]. In this case
it is reasonable to assume that, on a first-order basis, the index difference (m � n)d0 for m,n� 1 may be
rounded off to the closest integer.

4. Scaling hierarchies of standard model parameters

A remarkable yet unexplained property of SM parameters is that they appear to be organized in a hierar-
chical fashion. The scaling ratio of two parameters in the hierarchy depends on integer powers of the Cabibbo
angle whose experimental best-fit value is hC = 12.9–13� [23]. It is customary to work with the Cabibbo angle
in the equivalent trigonometric form, that is, k G sinhC = 0.223–0.225. Let us assume that the set of charged
lepton and current-quark masses, evaluated at an arbitrary energy scale, are denoted by the vector Ml and
matrix Mq, respectively

Ml¼: me ml ms½ � Mq¼:
mu md

mc ms

mt mb

2
64

3
75 ð19Þ

The explicit set of scaling ratios in (19) is given by [6–8,21,26]:

me

ml
� k4 ml

ms
� k2

mc

mt
� k4 ms

mb
� k2

mu

mt
� k8 md

mb
� k4

ð20Þ
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We note that the pattern of charged fermion masses depends on integer powers of k2. Here, quark masses are
arranged in two columns each involving three independent flavors, namely (u,c, t) and (d, s,b).

It is pertinent to bring up at this point the issue of fermion mixing and its parameterization. As it is known,
in the SM quark mass eigenstates are different from their weak eigenstates partners and the CKM matrix,
denoted by VCKM, relates these two bases by operating on the (�1/3) mass states (d, s,b) [18,19]:

d 0

s0

b0

2
64

3
75 ¼ V CKM

d

s

b

2
64
3
75 ð21Þ

In terms of individual mixing components, we have

V CKM¼
:

V ud V us V ub

V cd V cs V cb

V td V ts V tb

2
64

3
75 ð22Þ

Unlike (20), the CKM matrix expressed using the so-called Wolfenstein parameterization [20] is approximated
to the leading order by entries dependent on integer powers of k 1

V CKM �
1 k k3

�k 1 k2

k3 �k2 1

�������
������� ð23Þ

A similar matrix structure may be assigned to the recently discussed set of operators describing mixing in the
lepton sector [21,22]. Specifically, if the neutrino mass matrix mm and the charged lepton mass matrix ml are
diagonalized through the following transformations

mm¼
: U mmdiag

m U T
m

ml¼: ULmdiag
l UþR

ð24Þ

then it can be shown that neutrino mixing, defined by the so-called Pontercovo–Maki–Nakagawa–Sakata
(PMNS) matrix, may be represented as

U PMNS ¼ UþL U m ð25Þ
In one plausible scenario, one finds [21]

mlmþl � m2
s

k6 k5 k3

k5 k4 k2

k3 k2 1

�������
�������

ULmdiag
l U T

L � ms

k4 k3 k3

k3 k2 k2

k3 k2 1

�������
�������

ð26Þ

The standard parameterization of the PMNS matrix is formulated with the help of three mixing angles
(h12,h23,h13). According to the above scenario, we have

sin h12 ¼ k

sin h13 ¼ Ak3

sin h23 ¼ Bk2

ð27Þ

where A, B are positive numbers of order unity.

1 To simplify the argument, CP-violating phases are neglected here.
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Finally, it is instructive to recall that SM coupling charges and weak boson masses satisfy the following
scaling pattern [23]

e
g2

� �2

� kW
e

g3s

� �2

� k2
W

MW

MZ

� �2

� 1� kW

ð28Þ

Here, e2
G 4paem, g2

2¼
:

4pa2, g2
3s¼
:

4pa3s stand for the electromagnetic, weak and strong coupling charges and
kW is the ‘‘sine’’ squared of the Weinberg angle, whose magnitude is nearly identical to the nominal value of
the Cabibbo angle (kW G sin2hW = 0.229) [10,23].

As stated at the beginning of this section, relationships (19)–(28) provide ample analytical evidence that SM
parameters display a hierarchical dependence on the Cabibbo angle. This observation is consistent with (18)
and strongly suggests a direct connection between k and d2. In fact

k � d�1
2 ¼ 0:214 . . . ð29Þ

which leads one to conclude that the Feigenbaum constant for the quadratic map plays a central role in the
observed patterns of particle masses, gauge couplings and fermion mixing angles.2

5. Future extensions

As it is known, the SM does not fix the number of fermion families. For example, current data allow for
additional generations of leptons and quarks if the mass of the fourth family neutrino is larger than MZ/2 [9].
At the other end of the energy scale, various studies on neutrinoless double beta-decay processes point to a
spectrum of ultra-light neutrinos with masses well below the eV threshold [25]. As the ladder-like pattern
of SM parameters encoded in (18) and (19) is not bounded by fixed limits on the index difference (n � m)d0,
one may infer that new fermion generations arise beyond what is known today. The object of this section is to
formulate first-order predictions on the hypothetical ultra-light and super-heavy fermion masses that may be
observed in future experiments. The most straightforward extrapolation of (20) on account of (29) gives

ml4 � mmed
�2
2 < 4:6� 10�2 eV

ml5 � msd
2
2 ¼ 38:76 GeV

mq4 � mud
�2
2 ¼ 0:107 eV

mq5 � mtd
2
2 ¼ 3:95 TeV

ð30Þ

Here, l4, q4 (l5, q5) denote the ultra-light (super-heavy) families of leptons and quarks, respectively, whereas
mmeð< 1 eVÞ, ms, mu, mt are best-fit fermion masses evaluated at the Z boson scale [9,26]. We find that these
numbers agree well with predictions derived from the models developed in [9,25].

6. Open questions

The primary goal of this work was to present arguments that support an unexpected connection between
the Feigenbaum scaling and RG, on the one hand, and SM hierarchies, on the other. Needles to say, our study
does not provide a rigorous and comprehensive account of the physics underpinning the generation structure
of the SM. Many questions remain open. Their satisfactory resolution requires a more extensive and refined
plan of attack as well as a wealth of currently unavailable experimental data. Although a complete list of ques-
tions is not a practical option, we believe that among the most pressing issues that need to be dealt with are the
following:

2 A similar scenario is analyzed in [24] where mass generation in the lepton sector arises from the dissipative chaotic dynamics of the
basic weak boson-fermion system.
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1. What explains the small numerical difference k� d�1
2 � 9� 10�3? Are contributions related to higher non-

linear terms in (3) and (4) relevant to this context?
2. Why is the mass hierarchy dependent on integer powers of d�2

2 whereas the gauge coupling and mixing angle
hierarchy depend on integer powers of d�1

2 ?
3. What mechanism is responsible for maintaining the parameter hierarchy in the transition from the high-

energy domain of field theory to the low-energy domain of the SM?

7. Concluding remarks

We have suggested that the chaotic behavior of the RG flow offers valuable insights into the generation
puzzle of the SM. In particular, it was argued that the observed hierarchies of standard model parameters
amount to a series of scaling ratios depending on the Feigenbaum constant. A direct link was found between
this constant and the Cabibbo angle. Future generations of ‘‘would-be’’ heavy and ultra-light fermions may be
extrapolated using this dynamical model.
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Abstract

Quantum chromodynamics (QCD) is a renormalizable gauge theory that successfully describes the fundamental inter-
action of quarks and gluons. The rich dynamical content of QCD is manifest, for example, in the spectroscopy of complex
hadrons or the emergence of quark–gluon plasma. There is a fair amount of uncertainty regarding the behavior of pertur-
bative QCD in the infrared and far ultraviolet regions. Our work explores these two domains of QCD using non-linear
dynamics and complexity theory. We find that local bifurcations of the renormalization flow destabilize asymptotic free-
dom and induce a steady transition to chaos in the far ultraviolet limit. We also conjecture that, in the infrared region,
dissipative non-linearity of the renormalization flow supplies a natural mechanism for confinement.
� 2008 Elsevier B.V. All rights reserved.

PACS: 89.75.Fb; 05.45.Ac; 12.38.Lg; 12.38.Mh

Keywords: Complex dynamics; Transition to chaos; Quantum chromodynamics; Quark–gluon plasma

1. Introduction and motivation

As a building block of the Standard Model for particle physics, QCD is a successful gauge theory describing
the coupling of quarks and gluons [1–4]. It has several defining features, namely: (a) asymptotic freedom (the
interaction becomes weaker at short distances and it can be determined from perturbation theory), (b) around
200 MeV, confinement sets in and the particle spectrum consists exclusively of color neutral states, (c) QCD
exhibits spontaneous chiral symmetry breaking due to non-vanishing quark masses [1–4], (d) at high temper-
ature or high density, QCD is conjectured to sustain phase transitions leading to quark–gluon plasma and the
restoration of chiral symmetry [4]. Due to asymptotic freedom, perturbative QCD is reasonably effective in the
high-energy limit but fails to provide accurate predictions in the infrared limit, where the theory becomes
strongly coupled [1–5]. The infrared regime of QCD is a typical example where non-perturbative methods
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become compelling. Since closed-form solutions of field theory are, in general, difficult to extract and manage,
lattice-based computations and numerical approximations are among the most frequently used techniques for
investigation [2,3]. Less developed are methods based on non-linear analysis and dynamical systems theory,
whereby knowledge of explicit solutions is no longer critical. From this standpoint, it can be stated that
non-linear dynamics offers an attractive theoretical laboratory for probing the asymptotic dynamics of
QCD. With regard to field theory in general, this is also true near any boundary of the stability region where
randomness becomes the driving factor [6] and the emergence of bifurcations and complex behavior is a likely
occurrence. It is in this region where traditional procedures are questionable and one usually appeals instead
to alternative methods such as the ones provided by the renormalization group (RG) [7]. Starting from these
considerations, our goal is to develop a first-order analysis of the RG flow near the boundary of the stability
region. The sustained contribution of perturbations to the RG flow is modeled as follows: (a) since QCD is
asymptotically free, we assume that perturbations develop progressively but smoothly in the ultraviolet region,
(b) in contrast, because QCD becomes strongly coupled in the infrared, we assume that perturbations are best
modeled here as random fluctuations of Levy type. We caution that our work has an introductory nature and
does not claim to provide a comprehensive and rigorous coverage of the topic. As the contribution of fluctu-
ations and non-linearities becomes increasingly predominant in the asymptotic regime of QCD, a complete
analysis needs to carefully account for a variety of factors that are deliberately left out in our derivation.

The paper is organized according to the following plan: Section 2 examines the QCD dynamics in the far
ultraviolet region; the impact of Levy noise on the mechanism of infrared confinement is outlined in Section 3.
The last section contains a brief summary of results. Appendix A includes a condensed presentation of RG
equations in the context of perturbative QCD.

2. QCD dynamics in the far ultraviolet region

2.1. Perturbed RG flow equations

We start from the RG equations for coupling strength and quark masses [8]

das

dt
� �b0ðnÞa2

s � b1ðnÞa3
s

dm
dt
� �m c0ðnÞas þ c1ðnÞa2

s þ c2ðnÞa3
s

� �
þNP

ð1Þ

Here, n stands for the number of quark flavors and

t ¼ ln
K
K0

� �
ð2Þ

represents the sliding scale, where the momentum cutoff K is normalized to an arbitrary reference value K0

such as the strong interaction scale (K0 ffi 220 MeV). The non-perturbative term in the mass flow is denoted
by NP and is typically presumed to vanish faster than any power of the coupling [9]. In the presence of generic
perturbations (1) becomes

das

dt
� �b0ðnÞa2

s � b1ðnÞa3
s þ UðasÞ

dm
dt
� �m c0ðnÞas þ c1ðnÞa2

s þ c2ðnÞa3
s

� �
þWðmÞ

ð3Þ

Let us assume that the two additive contributions may be expanded in power series of a small parameter
that defines the perturbation amplitude (e� 1)

UðasÞ ¼ U0ðasÞ þ eU1ðasÞ þ e2U2ðasÞ þ � � �
WðmÞ ¼ W0ðmÞ þ eW1ðmÞ þ e2W2ðmÞ þ � � �

ð4Þ

For simplicity, we take
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UnðasÞ ¼ WnðmÞ ¼ 0; if n–1

U1ðasÞ ¼ a2
s ; W1ðmÞ ¼ �m

ð5Þ

(3) is thereby well approximated by

das

dt
� �½b0ðnÞ þ e�a2

s � b1ðnÞa3
s � �beðnÞa2

s � b1ðnÞa3
s ð6aÞ

dm
dt
� �m eþ c0ðnÞas þ c1ðnÞa2

s þ c2ðnÞa3
s

� �
ð6bÞ

in which

beðnÞ ¼ b0ðnÞ þ e ð7Þ

2.2. Linear stability analysis

Apart from the trivial solution represented by the fixed point FP0 ¼ ½a	s ¼ 0;m	 ¼ 0�, the non-trivial fixed
point of (6a) is given by FP ¼ ½a	s ¼ �ðbe=b1Þ;m	 ¼ 0�. Linearizing around FP0, we find that the Lyapunov
exponent is vanishing regardless of the numerical value of coefficients b0, b1 and, implicitly, regardless of
the number of flavors n. On the other hand, the Lyapunov exponents corresponding to FP are [10,11]

k1;2 ¼
s


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4D
p

2
ð8Þ

in which

s ¼ � b2
e

b1

þ eþ c0be

b1

� c1b2
e

b2
1

þ c2b3
e

b3
1

D ¼ � b2
e

b1

eþ c0be

b1

� c1b2
e

b2
1

þ c2b3
e

b3
1

 ! ð9aÞ

To streamline the analysis, we next assume that all terms and factors dependent on the ‘‘c” coefficients are
negligible. Following the general guidelines of non-linear analysis, we are interested in the so-called borderline
cases (i.e. centers, non-isolated fixed points, degenerate nodes and stars). These are determined by the numer-
ical value of the characteristic parameter [11]

R ¼ s2 � 4D ð9bÞ

Fig. 1 graphs the variation of R as a function of n as R approaches zero (red = 0.1, blue = 0.05, black =
0.001). It confirms that the dynamics of the RG flow becomes borderline as the number of quark flavors
approaches ncr = 16 and QCD reaches the point of losing its asymptotic freedom [12].

2.3. Bifurcation of the fixed point

We now wish to study the behavior of the non-trivial FP under the influence of a steadily increasing per-
turbation whose amplitude augments the noise terms previously considered (e� 1). The origin of this pertur-
bation may be related to thermal fluctuations (if the analysis is carried out at a high temperature setting) or to
the presence of a large number of high-order diagrams associated with the ultraviolet limit. To this end, let us
add an infinite series of terms to the coupling flow equation (6a), that is

das

dt
� �beðnÞa2

s � b1ðnÞa3
s þ

X1
i¼0

jiðnÞai
s ð10Þ

We assume next that only the first two terms in the series (10) are non-vanishing and weakly dependent on n.
Following the notation of [10], we obtain
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das

dt
� j1 þ asðj2 þ K1Þ þ K2a

2
s þ K3a

3
s ð11Þ

Here, K1,2,3 denote the so-called Lyapunov values which are, respectively, given by K1 ¼ � 6b2
e

b1
;

K2 ¼ be; K3 ¼ �b1. The FP is stable since K3 < 0. The set of scalars j1,2 denote the governing parameters
and measure the deviation of an arbitrary point in parameter space from origin (j1 = 0,j2 = 0). Under these
circumstances, the bifurcation curve has a cusp profile and is represented by [10,11]

j1 ¼

2j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jj2=ð�b1Þj

p
3
ffiffiffi
3
p þ � � � ; j2ð�b1Þ < 0 ð12Þ

Fig. 2 plots the variation of the Lyapunov values as a function of n. Fig. 3 shows the emergence of a cusp
bifurcation in the (j1,j2) plane when b1 is computed at n = 6 (see (A2)). Depending on the location of the
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governing parameters in the (j1,j2) plane, the stable FP stays unchanged or splits into two or three equilibria.
It follows that, near the non-trivial FP, irregular behavior of the coupling flow is likely to develop through a
progressive cascade of cusp bifurcations.

3. Levy noise as possible mechanism for confinement

As noted in the first section, the infrared limit is characterized by large fluctuations of the RG flow induced
by the strong-coupling regime of QCD. To preserve maximum generality of our approach and using argu-
ments related to the ubiquity of Levy flights in stochastic transport processes [13], we model these fluctuations
with the help of the generalized Langevin equation [14]

das

dt
¼ gðasÞas þ CaðtÞ ð13Þ

Here, Ca(t) represents a-stable Levy noise and the dissipative non-linearity g(as) is given by

gðasÞ ¼ �beðnÞas � b1ðnÞa2
s ð14Þ

Under these conditions, the asymptotic probability distribution function for as� 1 is given by [14]

pðr; asÞ /
1

brjasjr
ð15Þ

in which br > 0 stands for the rth order coefficient of (14) and

r ¼ 1þ r þ a ð16Þ

It follows that ha2
s i stays finite if r > rcr = 2 � a, that is, r > 0 if a = 2 and r > 2 if a = 0. We conclude that the

coupling flow driven by stable Levy noise remains confined if its expansion is taken at least to the second loop
approximation. This ansatz suggests a plausible mechanism for confinement in the IR region of QCD: instead
of reaching a regime of unbounded variations in interaction amplitude, higher order radiative corrections gen-
erated from g(as) dissipate the energy imparted by Levy noise. As a result, quarks and gluons form bounded
states with a nearly constant average coupling strength.

It is instructive to note that this conjecture fits well various lattice studies and phenomenological theories of
quark–antiquark ðq�qÞ interaction, such as the Richardson or Cornell models [2,3]. For example, the Cornell
model assumes that the long-range part of the static q�q potential has the form

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

1.2

0.9

0.6

0.3

0

0.3

0.6

0.9

1.2

1.5

0
κ1U κ2(     )

κ1L κ2(     )

κ2

Fig. 3. Cusp bifurcation in the (j1,j2) plane.

E. Goldfain / Communications in Nonlinear Science and Numerical Simulation 14 (2009) 1431–1438 1435



V ðrÞ ¼ br � a
r
þ V 0 ð17Þ

where a, b, V0 are constants. The coefficient b is commonly referred to as the ‘‘string tension” by comparison
with string theories of hadrons. The linear term of this potential (br) dominates the interaction at large dis-
tances where it models a color-flux tube of constant energy density.

It is also instructive to remark that, in a certain sense, the mechanism of confinement produced by Levy
fluctuations is similar to the phenomenon of Anderson localization in which quantum waves become confined
in random potentials [15].

We close this section with an evaluation on how statistical moments of coupling strengths and quark masses
depend on the Levy parameter a. For this purpose, it is sufficient to solve (1) in closed-form and use the
asymptotic probability distribution function (15) to determine the expectations and variances for coupling
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strength and mass. Fig. 4 plots the expectation of the coupling strength (M1as) along with its variance (Varas)
as functions of the Levy index a, whereas Fig. 5 plots the same behavior for the quark mass. The number of
quark flavors is assumed to be n = 6 in both cases. It is seen that the increase of variances with the Levy
parameter is significantly faster than the corresponding increase of expectation values.

4. Summary and discussion

Using the analytical tools provided by non-linear dynamics and complexity theory, we have examined the
effect of the renormalization flow in the asymptotic regions of QCD. It was found that the steady addition of
perturbations destabilizes asymptotic freedom and induces transition to chaos in the far ultraviolet limit. At
the other end of the energy scale, dissipative non-linearity of the renormalization flow provides a plausible
mechanism for confinement.

In Section 1, we pointed out the introductory nature of our treatment. QCD is a rich and complex theory
that has the potential of exhibiting a large spectrum of behaviors (see, for instance [24,25]). It is apparent that
the outcome of the set of coupled non-linear equations describing the RG flow depends strongly on how the
model is formulated and how the boundary conditions are set. To be specific,

(1) There are two dependent control parameters of the RG flow: the momentum scale K (or, equivalently,
the dimensional regularization parameter e = 4 � d [1,7]) and the number of fermion flavors
n = n(K) = n(t). Obviously, a simplified setting is to assume n = n(K) = n(t) is a slowly varying function
and carry the analysis with a single control parameter defining the energy scale at which the physics is
probed.

(2) The dimensionality of the flow plays a critical role: a planar system of equations (such as the one for
coupling and masses) does not lead to deterministic chaos. In contrast, the 3D system containing the
flow of fields and mixing angles leads to a much richer spectrum of behaviors, including deterministic
chaos.

(3) Addition of statistical perturbations leads to systems of coupled stochastic non-linear equations. These
have, in general, a complex array of possible dynamical patterns. In this case all parameters (fields,
masses, mixing angles, correlation functions) become random variables and their behavior needs to be
formulated in terms of probability distribution functions. The ability to formulate the correct noise
model is critically important. For convenience, we have limited the discussion to the generic case of Levy
noise.

(4) Finally, the presence of long-range interactions in space and time (extended spatial coupling, time-mem-
ory, delayed interactions) yields a problem with coupled multiple time-scales. The proper way to deal
with this setting is to use the tools offered by fractional calculus and fractional dynamics [16–23] or,
equivalently, with the formalism of non-extensive statistical physics [13].

Appendix A

Within the framework of perturbative QCD, the flow of the effective coupling strength with the sliding
energy scale l is governed by the beta-function:

l
oas

ol
¼ bðasÞ ðA1Þ

where

bðasÞ ¼ �b0a
2
s � b1a

3
s � b2a

4
s þO a5

s

� �
b0 ¼

11� 2
3
n

2p
; b1 ¼

51� 19
3

n

4p2
; b2 ¼

2857� 5033
9

nþ 325
27

n2

64p3

ðA2Þ

and n is the effective number of quark flavors [8]. Likewise, the scale dependence of a running quark mass m(l)
is represented by
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l
dmðlÞ

dl
¼ �cðasÞmðlÞ ðA3Þ

in which

cðasÞ ¼ c0as þ c1a
2
s þ c2a

3
s þO a4

s

� �
c0 ¼

2

p
; c1 ¼

101
12
� 5

18
n

p2
; c2 ¼

1

32p3
1249� 2216

27
þ 160

3
1ð3Þ

� �
n� 140

81
n2

	 
 ðA4Þ
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Abstract

It is known that Hamiltonian equations of motion for low-dimensional chaotic systems are typically formulated

using fractional derivatives. The evolution of such systems is governed by the fractional diffusion equation, which

describes self-similar and non-Gaussian processes with strong intermittencies. We confirm, in this context, that the

dynamics of a Brownian particle driven by space-time dependent fluctuations evolves towards Hamiltonian chaos and

fractional diffusion. The corresponding motion of the particle has a time-dependent and nowhere vanishing accelera-

tion. Invoking the equivalence principle of general relativity leads to the conclusion that fractional diffusion is locally

equivalent to a transient gravitational field. It is shown that gravity becomes renormalizable as Newton’s constant

converges towards a dimensionless quantity.

� 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional diffusion equations have emerged in recent years as a powerful tool for the analysis of stochastic processes

and complex dynamics. In particular, fractional diffusion has been successfully linked to the study of Hamiltonian

chaos in low-dimensional systems [1–4,10,11]. In this work we investigate an unexpected connection that may be es-

tablished between Hamiltonian chaos and the classical theory of gravitation. The object of study is the Brownian

motion of a free non-relativistic particle evolving in an environment that is random and space-time dependent. Despite

its simplicity, this model offers a convenient benchmark for probing dissipative systems of higher complexity. 1

Our three main findings are that (i) fluctuations are capable of migrating Brownian motion into Hamiltonian chaos,

(ii) the Brownian particle moves as if subjected to a locally transient gravitational field and (iii) Newton’s constant

converges towards a dimensionless quantity as the dynamics makes the transition from fractional to the classical re-

gime. The last finding opens the door for full renormalization of the theory, in manifest contrast with quantum gravity.

The approach may be extended to include open dynamical systems and stochastic field models and may thus provide

valuable insights into the long-standing issue of unification in field theory [25–28]. This is particularly attractive in light

of the recently discovered decoherence mechanism responsible for the transition from quantum to classical behavior in

systems strongly coupled to their environment [6,7].

It is instructive to point out that our conclusions are consistent with El Naschie’s conjecture on the connection

between gravitation and the Cantorian topology of space–time on or above the Planck scale (MPl � 1019 GeV)

E-mail address: ervingoldfain@hotmail.com (E. Goldfain).
1 We recall that, in general, there is a large spectrum of persistent fluctuations that may perturb the evolution of any dynamical

system in a variety of physical settings. Examples include thermal fluctuations in statistical ensembles, Poincare resonances [21] and

vacuum fluctuations in quantum physics [8].
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[12,22,24]. Our results are also relevant for theories concerned with the statistical nature of gravitational interaction in

ultra-high energy physics. These models are based upon the prediction that the underlying structure of space–time

undergoes large stochastic fluctuations as a result of short-distance gravitational effects [29,30].

The outline of the paper is as follows: Section 2 derives the relationship between the Langevin equation of Brownian

motion and Hamiltonian chaos. A brief review of the classical Hamilton–Jacobi formalism is outlined in Section 3. The

generalization of Hamilton–Jacobi equation to fractional diffusion is presented in Section 4. Section 5 establishes the

explicit connection between Hamiltonian chaos and classical gravity. Renormalization is discussed in Section 6 and

concluding remarks are presented in Section 7.

2. Noise driven dynamics and Hamiltonian chaos

It is well known that classical Langevin equation describes the transport of a non-relativistic Brownian particle

moving in a dissipative and disordered environment [13]. Let m0 denote the mass of the particle, c the damping co-

efficient and gðx; tÞ the stochastic force exerted on the particle. If there are no external potentials and the motion takes

place in one dimension, the Langevin equation reads

m0€xxþ c _xx ¼ gðx; tÞ ð1Þ

It is customary to assume that the stochastic force has a noise-like distribution characterized by a constant average and

a shift-invariant correlation function

hgðx; tÞi ¼ const:

hgðx; tÞgðx0; t0Þi ¼ Dwxðx� x0Þwtðt � t0Þ
ð2Þ

The fluctuation–dissipation theorem requires [13,14]

D � ckT ð3Þ

where D are the diffusion coefficient and T the temperature. 2

A convenient noise representation is provided by the delta-kicked model [15]. Under the most general circumstances,

the function gðx; tÞ may be factored as

gðx; tÞ ¼ fðxÞ
X1
n¼0

dðt � nsÞ ð4Þ

in which s ¼ 2p=X stands for the period separating successive kicks and the space-dependent amplitude is considered a

superposition of power terms

fðxÞ ¼
X1
m¼0

amxm ð5Þ

The sum of delta-kicks may be expanded in harmonics of X to obtain

X1
n¼0

dðt � nsÞ ¼ 1þ 2
X1
n¼1

cosðnXtÞ ð6Þ

In what follows we assume that, on a suitably chosen observation scale, the fundamental noise mode (n ¼ 1) is pre-

dominant and the rest of harmonics cancel out by destructive interference. As a result, the following condition holds

X1
n¼2

X1
m¼0

amxm cosðnXtÞ ! 0 ð7Þ

2 It is important to emphasize that, according to the fluctuation–dissipation theorem, any system undergoing random perturbations

must include damping as a mechanism for relaxation towards thermal equilibrium.
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The Langevin model may thus be transformed into a set of coupled differential equations using the parameterization

y1 ¼ _xx

y2 ¼ _yy1 ¼
1þ 2 cosðy3tÞ

m0

X1
m¼0

amxm
 !

� c
m0

y1

y3 ¼ X

ð8Þ

The system (8) resembles the evolution equations for the damped driven pendulum [16]. It has a three-dimensional

phase space which is the minimum dimension required for the onset of chaos in solutions of differential equations.

According to the KAM theory, the winding number

w ¼
ffiffiffiffiffiffiffiffiffiffiffi
c

m0X
2

r
ð9Þ

controls the transition from unperturbed motion to weak and fully developed Hamiltonian chaos [16,17]. A manifest

example of such a transition is driving with a time-dependent noise frequency XðtÞ. The corresponding phase space has

a rich topological structure characterized by a mixture of periodic orbits layered between chaotic islands. Fluctuations

in the driving frequency generated over short time intervals lead to progressive instability and eventual breakup of

KAM tori [17,23]. It is of interest to mention that the last torus destroyed by noise corresponds to the most irrational

winding number, i.e. to the golden mean

/ ¼
ffiffiffi
5

p
� 1

2
ð10Þ

which is a key concept of the E1 theory (see [22] and included references).

3. Overview of the classical Hamilton–Jacobi formalism

It is instructive, at this point, to bridge the gap between the Langevin formalism previously outlined and the ca-

nonical approach of classical mechanics based on the Hamilton–Jacobi equation. Consider the previous example of a

free non-relativistic particle of mass m0 moving in one dimension from origin to ðx; tÞ. In the absence of any damping

and disorder, its trajectory is given by

xðtÞ ¼ _xxt ð11Þ

The action Sðx; tÞ satisfies the Hamilton–Jacobi equation [5]

oS
ot

þ 1

2m0

oS
ox

� �2

¼ 0 ð12Þ

and has the explicit form

Sðx; tÞ ¼ m0

2

x2

t
þ S0 ð13Þ

where S0 is an arbitrary additive constant. Setting

� oS
ot

¼ p2

2m0

¼ const:

p ¼ m0 _xx
ð14Þ

recovers the uniform motion expressed by (11).

As it is known, the Hamilton–Jacobi equation may be converted to a second-order partial differential equation

describing standard diffusion or wave propagation. To elaborate on this point we proceed by analogy with the path

integral formalism of quantum mechanics [8,31,32]. The probability amplitude for a given space–time path xðtÞ is given
by

q½xðtÞ� ¼ q0 expfiS½xðtÞ�g ð15Þ

Assuming that the technique of analytic continuation is applicable [9,32], (15) becomes

q½xðtÞ� ¼ q0 expf�SE½xðtÞ�g ð16Þ
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where SEð�Þ represents the Euclidean action. Taking into account that momentum is a constant of motion, or

o2SE=ox2 ! 0, the Hamilton–Jacobi equation (12) assumes the form

oq
ot

þ 1

2m0

o2q
ox2

¼ 0 ð17Þ

For sufficiently small space–time paths the probability amplitude is proportional to the action, that is

q½DxðtÞ� � q0f1� SE½DxðtÞ�g ð18Þ

We shall use relation (18) in the next section.

4. Generalization of Hamilton–Jacobi formalism to fractional diffusion

For the sake of clarity we briefly summarize results obtained so far. It was found in Section 2 that, if conditions

required by KAM theory are met, path dependent fluctuations are capable of migrating the classical Brownian motion

into Hamiltonian chaos. The adequate formulation of this noise-driven regime requires use of fractional space and time

derivatives. Section 3 has pointed out that the canonical treatment of motion in classical mechanics is based upon the

Hamilton–Jacobi equation. A natural question arises on how to properly apply the Hamilton–Jacobi formulation to

Hamiltonian chaos. This is the object of the current section.

Let P ðx; tÞ represent the probability density function of finding the particle at location x at instant t. Fractional
diffusion equation is defined by two critical exponents ða; bÞ corresponding to the space and time derivatives of Pðx; tÞ
[1,2]. To simplify the presentation and without any loss of generality, we set below m0 ¼ 1

2
in (17). Fractional diffusion of

the Brownian particle then takes the form

obP
otb

¼ oaP
ojxja þ

t�b

Cð1� bÞ dðxÞ ð19Þ

for positive time intervals t > 0 and point-like source functions [1,2,4]. Particular cases include Levy transport (b ¼ 1)

and fractal Brownian motion (0 < b < 1, a ¼ 2). The probability density stays positive if the range of the two exponents

is limited to the intervals below

0 < a6 2

0 < b6 1
ð20Þ

To simplify the formalism we adopt below the hypothesis that the integral over all possible paths connecting the

initial and final space-time points can be approximated by a single contribution arising from the most dominant path.

Let D represent the linear extent of the particle motion. Following Section 3, we note that Pðx; tÞ is equivalent to

P ðx; tÞ ¼ 1

D
q½xðtÞ�
q0

� �2

ð21Þ

and satisfies the normalization conditionZ 1

�1
Pðx; tÞdx ¼ 1 ð22Þ

For sufficiently small paths we have from (18)

P ðDx; tÞ � 1

D
1f � 2SE½DxðtÞ�g ð23Þ

which shows that, up to an additive constant and a scaling factor, the probability density function and Euclidean action

are identical. Under these circumstances, the asymptotic solution of the fractional diffusion equation (19) reads [2]

SE½DxðtÞ� �
�
� D

2

�
1

p
tb

jDxjaþ1

Cð1þ aÞ
Cð1þ bÞ sin

pa
2

" #
ð24Þ
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for ultra-short time intervals obeying

ðDxÞa � tb ð25Þ

Dimensional analysis of (24) in light of normalization (22) leads to

½t�b ¼ ½Dx�a ð26Þ

in which ½�� stands for the unit of time and space.

5. Fractional diffusion as locally transient non-inertial motion

We may naturally associate the following Hamilton–Jacobi equation to the Euclidean action (24) [18]:

Efr ¼ � obSE
otb

¼ m0

2

obðDxÞ
otb

� �2
ð27Þ

where Efr is the energy transported by the fractional diffusion process and obðDxÞ
otb generalizes the ordinary velocity cor-

responding to b ¼ 1. Hence

vfr ¼
obðDxÞ
otb

¼
ffiffiffi
2

p
D
Cð1þ aÞ sinðpa=2Þ

pjDxj1þa

" #1=2
ð28Þ

Following the rules of fractional differentiation [20], the generalized acceleration may be obtained from (28) as

afr ¼
obvfr
otb

¼ vfr
t�b

Cð1� bÞ ð29Þ

This expression indicates that the free Brownian particle undergoes a space-time dependent non-inertial motion for

t < 1. The fractional acceleration vanishes in the limit b ¼ 1 as Cð0Þ ! 1. According to the equivalence principle of

general relativity, a non-inertial frame of reference is locally identical to a gravitational field. We conclude that, under

the assumption that the equivalence principle holds for non-smooth trajectories, the statistical transport of the free

Brownian particle is locally equivalent to the action of a transient gravitational field. The next section attempts to show

that this field may be described by a renormalizable theory.

6. Dimensional analysis and renormalization

In the relativistic theory of gravitation Newton’s constant carries a negative mass dimension. Power expanding the

metric around the Lorentz solution leads to a non-polynomial action in this constant [19,32] (see Appendix A). As a

result, quantum gravity theories founded on general relativity are considered non-renormalizable. The object of this

section is to evaluate the impact of critical exponents ða; bÞ on renormalizability from arguments based on dimensional

analysis.

(26)–(28) may be used to determine the dimensions of energy, fractional velocity and mass starting from the scalar

nature of the Euclidean action. We find, respectively

½Efr� ¼ t�b

½vfr� ¼ ½Dx�½t��b ¼ ½Dx�1�a

½m0� ¼
½Efr�
½vfr�2

¼ ½Dx�a�2

ð30Þ

In order to include Newton’s constant in these considerations it is necessary to write down a fundamental field

equation. The most straightforward choice is the Poisson equation of classical field theory. Let Ufr and Gfr represent the

gravitational potential and coupling constant induced by fractional diffusion. The natural generalization of Poisson’s

equation in 1+ 1 space–time is

o2aUfr

oðDxÞ2a
¼ 4pGfrq ð31Þ
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where q is the equivalent source of Ufr, expressed in units of mass per unit of length. 3 Since the standard Poisson

equation is recovered in the limit a ¼ 1, it makes sense to change the upper bound in (20) such that 0 < a6 1. The

solution of (31) for a uniform source and subject to the boundary condition

UfrðDx ¼ 0Þ ¼ U0 ð32Þ

is supplied by [20]

UfrðDxÞ ¼ 4pGfrq
ðDxÞ2a

Cð2aþ 1Þ þ U0 ð33Þ

In general relativity the gravitational potential is dimensionless ([5] and Appendix A) which can be expressed as

½U� ¼ ½m0�0 ð34Þ

In the framework provided by fractional diffusion this constraint may be relaxed to a less restrictive requirement, that is

½Ufr� ¼ ½m0�cðaÞ ð35Þ

where cðaÞ represents an a-dependent exponent obeying

lim
a!1

cðaÞ ¼ 0 ð36Þ

It is apparent that condition (36) does not uniquely determine the explicit form of cðaÞ. For example, two choices from

the infinite span of possible solutions are

cðaÞ ¼ 1� a2

cðaÞ ¼ j ln aj
ð37Þ

As it is shown below, we use this redundancy to control the mass dimension of Gfr.

Since

½q� ¼ ½m0�
½Dx� ð38Þ

we obtain from (30), (33), (35) and (38)

½Gfr� ¼ ½m0�cðaÞ�
3ða�1Þ
a�2 ð39Þ

Demanding a positive or vanishing mass dimension in (39) amounts to

cðaÞP 3ða� 1Þ
a� 2

ð40Þ

which further restricts the space of acceptable functions cðaÞ.
Using (36) it is seen that condition (40) is automatically satisfied for a ! 1, that is, when the dynamics makes the

transition from fractional to the classical regime.

It is instructive to consider the particular choice cðaÞ ¼ j ln aj. Condition (40) leads to

a6 0:28683 ð41Þ

7. Concluding remarks

We have reported the close connection between Hamiltonian chaos and fractional diffusion, on the one hand, and

classical theory of gravitation on the other. It was found that fractional diffusion enables Newton’s constant to converge

towards a dimensionless quantity and creates the necessary framework for renormalization. The approach is built upon

the Hamilton–Jacobi formalism and may be thus extrapolated to a larger class of field theories. Our work complements

3 A similar analysis may be carried out in 3+1 space–time. It involves a lengthy derivation and it is not included here.
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similar studies linking classical gravity to space–time fluctuations, as well as several papers on unification via fractal

topology [24–28].

Appendix A

For ease of reading we briefly review in this Appendix A some key points regarding the renormalization topic of

quantum gravity and related theories. Additional details may be found in [8,31,32].

The potential generated by a point mass m at a distance R in Newtonian gravitation is given by

u ¼ �G
m
R

ðA:1Þ

Let glm denote the components of the metric tensor (l; m ¼ 0, 1, 2, 3). The potential is a dimensionless quantity related to

the magnitude of g00, the temporal component of the metric tensor, via

g00 ¼ 1þ 2u ðA:2Þ

Because g00 and u are both dimensionless and since, in natural units, distance is measured as reciprocal of mass

½R� ¼ ½m��1 ðA:3Þ

it follows from (A.1) that Newton’s constant has a )2 mass dimension, that is

½G� ¼ ½m��2 ðA:4Þ

The negative mass dimension carried by G makes gravity non-renormalizable due to the following argument: the

probability amplitude for graviton-graviton scattering at a given energy E may be computed using the series expansion

amplitude � 1þ GE2 þ ðGE2Þ2 þ � � � ðA:5Þ

where different orders correspond to various Feynman diagrams. The series (A.5) is manifestly divergent and the re-

sulting scattering amplitude lacks physical meaning.

A similar argument may be brought up in conjunction with any attempt to quantize gravity by power expanding the

metric tensor glm around the Euclidean metric gð0Þlm (where gð0Þlm is referred to as the Lorentz solution)

glmðxÞ ¼ gð0Þlm þ
ffiffiffiffi
G

p
hlm ðA:6Þ

In the above, the metric deviations hlm are associated with the graviton field. Each term of the series contains derivatives

and an ever-increasing number of hlm fields and powers of G. The action series assumes the generic form

S � 1

16pG

Z
d4x½ohohþ hohohþ h2ohohþ � � �� ðA:7Þ

where space–time indexes l, m have been omitted for simplicity. The action expansion is not considered polynomial due

to the very existence of a non-scalar Newton constant.

Dimensional analysis indicates that a renormalizable theory must be characterized by a coupling constant having a

positive or vanishing mass dimension. Quantum electrodynamics, the electroweak model and quantum chromody-

namics are examples of renormalizable theories because the fine-structure constant and gauge couplings g1, g2 and g3
are dimensionless.
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Abstract

This work reveals the close connection between the random fractal topology of space–time in microphysics and the

renormalization group program (RG) of quantum field theory. As known, the primary goal of RG is to consistently

remove divergences from quantum computations by factoring in the energy scale ðlÞ at which physical processes are

probed. RG postulates that the action functional is independent of any particular choice of l, that is, physical processes
are invariant to arbitrary changes of the observation scale. In this context, we conjecture that l represents a continuous

random variable having a uniform density function. Novel results emerge in the basin of attraction of all fixed points,

namely: (i) the field exponent becomes a continuous random variable and (ii) space–time coordinates become fractals

with random dimensions. It is concluded that the random topology of space–time is not an exclusive attribute of the

Planck scale but an inherent manifestation of stochastic dynamics near any fixed point of the underlying field theory.

� 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years significant effort has been devoted to applications of fractal geometry, deterministic chaos and

stochastic dynamics in classical and quantum physics. Due to the wide extent of this research field, a complete listing of

main contributions is impractical. We mention here few examples that are representative for the topic of this work:

anomalous diffusion and Levy statistics in Hamiltonian phase space [12,13], non-differentiability of Feynman paths

[14,15], application of fractional Brownian motion in quantum field theory [4], vacuum fluctuations, chaotic maps and

stochastic quantization in particle physics [16], mass generation in the lepton sector due to period doubling transition to

chaos [17], quantum Brownian motion [18], fractional dynamics and origin of the fine-structure constant [19], Can-

torian space–time and the topological foundation of coupling and mass spectra in the Standard Model [20–27].

The prevailing interpretation of El Naschie�s E1 model is that the Cantorian space–time topology emerges at mass

scales comparable to the Planck length. Drawing on recent results regarding renormalization group in the presence of

quantum fluctuations [4], our work suggests that the random topology of space–time is not an exclusive attribute of the

Planck scale but an inherent manifestation of stochastic dynamics near any fixed point of the underlying field theory.

The paper is organized as follows: Section 2 introduces the concept of random observation scale from arguments

related to equilibrium statistical mechanics. Taking the u4 theory as a benchmark model, Section 3 examines the be-

havior of the RG solution near the unique fixed point g ! 0. The stochastic character of the field exponent is analyzed

in Section 4. Section 5 investigates the temporal evolution of the u field from a statistical mechanics perspective.

Connection of space–time coordinates to fractal objects having random dimension is discussed in Section 6. Results are

summarized in Section 7.

E-mail address: ervingoldfain@hotmail.com (E. Goldfain).
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2. The random observation scale: a statistical mechanics argument

Classical statistical mechanics of systems at thermal equilibrium asserts that energy or energy and number of

particles in thermodynamic ensembles are subject to incessant fluctuations. Consider, for example, a system enclosed in

a heatbath at constant finite temperature T (a ‘‘canonical ensemble’’). The energy fluctuation is linearly dependent on

temperature according to [1]:

DE
hEi �

T
Ne

ð1Þ

where hEi is the thermal average of the energy, N is the number of particles in the system and e is the energy per particle.
Fluctuations vanish for macroscopic systems in the limit N ! 1 where the distribution of energy is sharply peaked

around hEi. In contrast, fluctuations survive in canonical ensembles comprising low-dimensional classical or quantum

systems such as dilute Bose gases.

In the same context, we recall that quantum fields are objects with manifest statistical properties owing to the

cascade of virtual processes that occur during propagation and interaction. We also recall that a basic requirement of

any realistic quantum field theory is renormalizability [2]. To render all computations finite, a well-established regu-

larization procedure needs to be implemented. The renormalization program imposes an arbitrary energy scale ðlÞ
upon which no physical consequences must depend [2,3]. This sets the ‘‘coarse-graining’’ scale and the resolution at

which the underlying physics is probed.

From these arguments it follows that, if the average energy of the quantum field system hEi sets its temperature, then

l is expected to undergo continuous fluctuations about hEi. There are no preferential values in this random occurrence.

Hence, invoking the uncertainty principle, we assert below that l represents a continuous random variable with a

uniform probability density function pðlÞ. Let l be defined inside a range bounded by lM and lm. We have

pðlÞ ¼ 1

lM � lm
6

s
h

if l 2 flm; lMg

pðlÞ ¼ 0 if otherwise

ð2Þ

in which h is Planck�s constant and s sets the observation time window. During s we assume that the system randomly

samples all available energy scales contained in the range.

A comment on (2) is now in order. Dimensional consistency requires the right hand side of (2) to be expressed in

scalar form. The simplest way to fulfill this requirement is to work with a relative energy scale l0 defined via

l0 ¼ l
lM

ð3Þ

which converts (2) into

pðl0Þ ¼ 1

1� l0
m

6 s0 if l 2 flm; lMg

pðl0Þ ¼ 0 if otherwise

ð4Þ

where h ¼ 1 and s0 ¼ lMs is the non-dimensional time observation window. According to this interpretation, the time

window s0 and energy scale l0 are statistically conjugate variables. This implies that there is random sampling of all

available time instants contained in s0 in a similar fashion with energy sampling in the range ½l0
m; 1�. The natural

outcome of this conjecture is that time behaves as a stochastic variable. To derive similar conclusions on the space

coordinate we note that, in non-relativistic field theories, time and space scale independently as

~xx ¼ s x0
!

t ¼ szt0
ð5Þ

where z 6¼ 1 is the so-called dynamic exponent [4]. In scalar form (5) reads

~xx0 ¼ s x0
!0

t0 ¼ szt0
0

ð6Þ
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in which

x0 ¼ xlM

t0 ¼ tlM

ð7Þ

It follows that space and time are non-trivially related through

t0 � ðx0Þz ð8Þ
and the analogue of (4) is given by

pðl0Þ ¼ 1

1� l0
m

6 ðk0Þz if l 2 flm; lMg

pðl0Þ ¼ 0 if otherwise

ð9Þ

where k0 ¼ klM is the spatial observation window. The space coordinate randomly samples all available locations

contained in k0 as the energy scale fluctuates within ½l0
m; 1�.

3. Behavior of the RG solution near fixed points

Consider a simple field theoretic framework comprising the scalar field operator uð~xx; tÞ; the mass parameter m and

coupling constant g. A typical prototype is the well-known u4 model whose free-form action is [2,3]

S½u� ¼
Z

1

2
½omuomu

�
� m2u2� � l4�dg

4!
u4

�
dd�1xdt ð10Þ

in which d stands for the dimension of the space–time domain and m is the space–time index. Fluctuations in the

observation scale are expected to create subsequent fluctuations of the operator uð~xx; tÞ. The field probability density

function plðu; g;mÞ has dimension

½u��1 ¼ l
1�d

2
M ð11Þ

and satisfies the RG equation [4]:

l
o

ol

�
þ bðgÞ o

og
þ dðgÞm o

om
� cðgÞ

2
u

o

ou

�
plðu; g;mÞ ¼ 0 ð12Þ

where the coefficient functions

l
og
ol

¼ bðgÞ

l
om
ol

¼ dðgÞm

l
ou
ol

¼ � cðgÞ
2

u

ð13Þ

outline the scale dependence of coupling, mass and field, respectively. As known, coefficient functions are specific for

each field theory. In particular, the sign of bðgÞ determines the type of asymptotic behavior at large momenta, that is,

whether or not the theory displays asymptotic freedom [4,5]. In general, the zeros of bðgÞ define the set of fixed points

fg�i g; i ¼ 1; 2; . . . ;N . In the neighborhood of these points (i.e., in their basin of attraction) Eqs. (13) become

l
om
ol

¼ dðg�i Þm

l
ou
ol

¼ � cðg�i Þ
2

u

ð14Þ

To further carry out computations involving exclusively scalar variables, it is convenient to cast (14) in a non-

dimensional form. Dividing both sides by their respective units for mass and field yields
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l0 om
0

ol0
¼ dðg�i Þm0

l0 ou
0

ol0
¼ � cðg�i Þ

2
u0

ð15Þ

where

u0 ¼ u
½u�

m0 ¼ m
lM

ð16Þ

(15) is solved by the following set of closed-form solutions:

m0
i ¼ Kmðl0Þdðg

�
i Þ

u0
i ¼ Kuðl0Þ�

cðg�
i
Þ

2

ð17Þ

in which Km, Ku are integration constants. It can be seen that, in general, both field and mass solutions display a N -fold

multiplicity and acquire properties of continuous random variables. There is only one fixed point in the u4 model

corresponding to the IR limit ðg ! 0Þ as l ! 0. In its basin of attraction we have

m0 ¼ fmðl0Þ ¼ Kmðl0Þd0

u0 ¼ fuðl0Þ ¼ Kuðl0Þ�
c0
2

ð18Þ

where c0 ¼ cð0Þ and d0 ¼ dð0Þ.
Since the power-law relations contained in (18) are strictly monotonic, their respective probability density functions

are given by [6]

pðm0Þ ¼ pl½f �1
m ðm0Þ� d

dm0
½f �1

m ðm0Þ�
����

����
pðu0Þ ¼ pl½f �1

u ðu0Þ� d

du0
½f �1

u ðu0Þ�
����

����
ð19Þ

leading to

pðm0Þ ¼ K
� 1
d0

m

ð1� l0
mÞd0

ðm0Þ
1
d0
�1

pðu0Þ ¼ 2K
2
c0
u

ð1� l0
mÞc0

ðu0Þ�
�

2
c0
þ1

� ð20Þ

One may verify from (20) that the completeness relationZ 1

l0m

pðm0Þdm0 ¼
Z 1

l0m

pðu0Þdu0 ¼ 1 ð21Þ

is automatically satisfied. For simplicity we choose Km ¼ Ku ¼ 1.

Let m0
i ;u

0
i and m0

f ;u
0
f designate two random sets of initial and final mass and field states. Using (20) yields the

following mass and field moments corresponding to these random intervals

hðm0Þ2ifi ¼
1

ð1� l0
mÞð2d0 þ 1Þ ðl0

f Þ
2d0þ1

h
� ðl0

i Þ
2d0þ1

i

hðu0Þ2ifi ¼
1

ð1� l0
mÞðc0 � 1Þ ðl0

f Þ
1�c0

h
� ðl0

i Þ
1�c0

i ð22Þ
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Let the initial state be fixed and the final state randomly vary. Up to an additive constant (22) may be written as

hðm0Þ2i ¼ 1

ð1� l0
mÞð2d0 þ 1Þ ðl

0Þ2d0þ1

hðu0Þ2i ¼ 1

ð1� l0
mÞðc0 � 1Þ ðl

0Þ1�c0

ð23Þ

We shall make use of these relations in Section 6.

4. Stochastic nature of field scaling

A well-known property of critical phenomena is that, near transition points, all relevant variables scale in a similar

fashion with the control parameter. The scaling behavior is defined by a set of fixed exponents that are deterministic in

nature and dependent on the dimensionality of the system [5,7,8]. In contrast, we are going to show in this section that

the field exponent c0 acquires a stochastic character due to the postulated randomness of the observation scale l0.

Let

Gð~xx 0; t0Þ ¼ hu0ð~xx 0; t0Þu0ð0; 0Þi ð24Þ

denote the field propagator from the initial space–time point (0,0) to the arbitrary point ð~xx; tÞ [5]. Upon independent

scaling of the non-dimensional space–time coordinates according to (6), it can be shown that the field propagator

changes as [4]

Gð~xx 0; t0Þ ¼ ðr0Þ2vf t0

ðr0Þz
� �

ð25Þ

if the field scales as

u0ð~xx 0; t0Þ ¼ svu0
�
x0
!0

t0
0

	
ð26Þ

and the scale factor is chosen to be proportional to the modulus of the position vector

s � j~xx 0j ¼ r0 ð27Þ

The asymptotic behavior of f
h

t0

ðr0Þz
i
is supplied by

lim f
t0

ðr0Þz
� �

! const: if t0 � ðr0Þz

lim f
t0

ðr0Þz
� �

! t0

ðr0Þz
� �2v=z

if t0 � ðr0Þz
ð28Þ

In d-dimensional space–time and at the fixed point, v is related to the field exponent c0 via

v ¼ � d
2



� 1þ c0

2

�
ð29Þ

Using the propagator interpretation as probability density amplitude for transitions involving the initial (0,0) and final

space–time location ð~xx; tÞ [3], we demandZ x0
f

x0
i

½Gð~xx0; t0Þ�2 dd�1x0 ¼ 1 ð30Þ

in which ðx0i ; x0f Þ are random limits of the spatial domain. In order to explicitly carry out the integral, these limits need to

be expressed in terms of l0. Let us rewrite (9) in the equivalent minimal form

½x0 � hx0i�z½l0 � hl0i� ¼ 1 ð31Þ

and take for simplicity

hx0i ¼ hl0i ¼ 0 ð32Þ
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Thus

x0i ¼ ðl0
i Þ

�1
z

x0f ¼ ðl0
f Þ

�1
z

ð33Þ

We note that (30) is a result of the general closure conditionZ
Gð~xx; tÞG�

�
x
0!
; t
	
dd�1x ¼ dðd�1Þ

�
~xx� x

0!	
ð34Þ

upon a suitable normalization of the d-function to unity [9]. Since, apart from a multiplicative constant,

dd�1x0 ¼ ðr0Þd�1
dr0 ð35Þ

we find from (30)

ðl0
f Þ

d�2ð2�c0 Þ
z � ðl0

i Þ
d�2ð2�c0Þ

z ¼ 2ð2� c0Þ � d ð36Þ

Keeping the initial state fixed and letting the final state fluctuate, gives the generic relation

ðl0Þ
d�2ð2�c0 Þ

z ¼ 2ð2� c0Þ � d ð37Þ

highlighting the random nature of c0.

5. Statistical mechanics of the u4 model

In the previous section it was shown that the field exponent c0 is no longer a fixed parameter of the RG but a random

variable dependent on l0. To gain further insight into statistical properties of the scalar field, it is desirable to analyze

the effect of the stochastic observation scale on the field dynamics. To this end, a convenient starting point is the ef-

fective action formalism of the u4 theory [3]. Consider the vacuum expectation value of the operator uð~xx; tÞ in the

presence of an external source Jð~xx; tÞ

ucð~xx; tÞ ¼
h0juð~xx; tÞj0iJ

h0j0iJ
ð38Þ

(38) represents the classical counterpart of the scalar field operator. The equation of motion for the free u4 theory is

obtained by replacing ucð~xx; tÞ in (10)

dS½uc�
duc

¼ ½omom þ m2�ucð~xx; tÞ þ
l4�dg
3!

ucð~xx; tÞ
3 ¼ 0 ð39Þ

For simplicity, we proceed with the assumption that the field ucð~xx; tÞ is spatially uniform, uc ¼ ucðtÞ. Furthermore, to

ensure consistency with the formal treatment developed so far, we pass to a non-dimensional representation of (39) by

using (7), (11) and (16). The resulting equation of motion reads

o2

oðt0Þ2

"
þ ðm0Þ2

#
u0

cðt0Þ þ
g
3!
u0

cðt0Þ
3 ¼ 0 ð40Þ

In the basin of attraction of the IR fixed point, the non-linear coupling term in (40) becomes a small perturbation to the

free harmonic oscillator whose equation is

o2

oðt0Þ2

"
þ ðm0

effÞ
2

#
u0

cðt0Þ ¼ 0 ð41Þ

The net result of this approximation is that the original mass may be replaced by an effective mass parameter [10]

m0
eff ¼ m0 þ gðU0

cÞ
2

16m0
ð42Þ

where U0
c is the amplitude for the closed-form solution of (40), i.e.

u0
c ¼ U0

csnðm0
eff t

0Þ ð43Þ

and m0 is a random variable depending on d0 (Section 3).
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6. Emergence of space–time as a random fractal set

The stochastic nature of u0
c can be fully accounted for by adopting a statistical interpretation of its dynamics. In this

context, the field second moment may be computed as [11]

hðu0
cÞ

2i � coth
1

2
m0

eff t
0


 �
ð44Þ

In the IR limit g � m0 < 1 and for time intervals consistent with (28) (that is, for t0 � ðr0Þz), a reasonable approxi-

mation of (44) is

hðu0
cÞ

2i � 1

m0
eff t

0
ð45Þ

Direct comparison of (23) with (45) gives

t0 � ð1� l0
mÞðc0 � 1Þt0effðl0Þc0�1 ð46Þ

in which t0eff ¼ ðm0
effÞ

�1
is the period of the harmonic oscillator described by (41). Using (8) we find

x0 � ð1� l0
mÞðc0 � 1Þt0effðl0Þ

c0�1

z ð47Þ

It follows from (46) and (47) that time and space coordinates scale as random fractals whose dimensions depend on

both d0 and c0.

7. Summary

Starting from the viewpoint that the renormalization group scale is a continuous random variable spanning a specific

range, we have shown that, near fixed points of the underlying field theory, the space–time manifold acquires properties

of random fractal sets. We have found that the manifold dimension depends on the values taken by the mass and field

exponents at the fixed point. The u4 theory has been chosen as an illustrative framework, however, results are not

restricted to this model.
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Abstract

A long-standing puzzle of the current standard model for particle physics is that both leptons and quarks arise in rep-
licated patterns. Our work suggests that the number of fermion flavors may be directly derived from the dynamics of cou-
pling flow equations. Specifically, we argue that the number of flavors results from demanding stability of the coupling flow
about its fixed-point solution.
� 2007 Elsevier B.V. All rights reserved.

PACS: 11.10.Hi; 11.15.�q; 12.20.�m; 12.38.Aw; 47.15.Fe
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1. Introduction and motivation

The standard model for particle physics (SM) represents a highly successful framework for the description
of sub-nuclear particles and their interactions in an energy range bounded by an upper limit of about 100 GeV
([10] and Appendix A). The backbone of SM is relativistic quantum field theory (QFT) whose predictive
power rests primarily on the techniques of perturbation theory [1–7,19]. A key premise of QFT is that the
cumulative contribution of arbitrary-order quantum corrections above any energy threshold can be conve-
niently suppressed. Carrying out this program means that all quantum processes above the threshold can
be absorbed into a redefinition of parameters that make up the theory (masses, couplings, fields). It is custom-
ary to call this prescription the ‘‘renormalization group’’ approach (RG) and its outcome an ‘‘effective field
theory’’. The main outcome of RG is that the parameters of the theory depend on the energy scale at which
the physics is probed ([8] and Appendix B). In particular, an important concept in RG is the evolution of cou-
pling with the energy scale, referred to as the coupling flow equation. Since SM is an effective framework for
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the description of particle physics below 100 GeV [1–7], it is typically assumed that the coupling flow is stable
and its approach towards equilibrium develops in a deterministic way.

Despite its remarkable predictive power, SM cannot explain why both leptons and quarks arise in repli-
cated patterns. This puzzle is referred to as the fermion ‘‘flavor problem’’ [11,19] and it continues to challenge
to the day our understanding of particle physics. Motivated by the relevance of nonlinear dynamics in field
theory [12–17,20,21], this work suggests that the number of fermion flavors may be directly derived from
the dynamics of coupling flow equations. Specifically, we find that the number of flavors results from demand-
ing stability of the coupling flow about its fixed-point solution.

The paper is organized as follows. Section 2 surveys the theory underlying the gauge coupling flow in SM
and Section 3 retrieves the number of fermion flavors from a standard stability analysis. Results and conclud-
ing remarks are detailed in the last two sections. Three Appendix sections are included for convenience. The
deal, respectively, with a brief overview of SM, an introduction to the RG approach to coupling flow equa-
tions and a brief presentation of the Routh–Hurwitz criterion.

2. Coupling flow equations

We start from the set of beta-functions describing the RG flow in the gauge sector of SM [1–7, Appendix B]:

dgi

dt
¼ biðgÞ ¼ biðN ; nÞg3

i þOðg5
i Þ ð1Þ

in which i = (1, 2,3), N is the dimension of the gauge group and n the number of fermion flavors. In particular,
the beta-functions for quantum electrodynamics (QED) and non-abelian gauge theories (the weak interaction
model and QCD) are respectively supplied by [6,7]

bQEDðeÞ ¼ N
ne3

12p2
þOðe5Þ; ð2Þ

bNAðgÞ ¼ �
11N � 2n

48p2
g3 þOðg5Þ: ð3Þ

Accounting for the underlying SU(3) · SU(2) · U(1) gauge structure of SM, the explicit form of the coef-
ficient vector is

bðN ; nÞ ¼
b1ð1; nÞ
b2ð2; nÞ
b3ð3; nÞ

�
�
�
�
�
�
�

�
�
�
�
�
�
�

ð4Þ

with entries

b1ð1; nÞ ¼
n

12p2
; for N ¼ 1;

b2ð2; nÞ ¼ �
11� n
24p2

; for N ¼ 2;

b3ð3; nÞ ¼ �
33� 2n

48p2
; for N ¼ 3:

ð5Þ

Let us assume in what follows that typical coupling strengths of SM represent fixed-point solutions of (2)
and (3). For reference, we also assume that these are computed at the high-energy limit set by the mass of the
Z boson [Appendix B, 19]:

aQEDðMZÞ ¼ 1=127:9 � 0:00782;

a2ðMZÞ ¼ 0:0338;

a3ðMZÞ ¼ 0:123;

ð6aÞ

or, in set form

aðMZÞ ¼ 0:00782 0:0338 0:123f g ð6bÞ
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Using (6b) the set of coupling parameters is given by

g2
0ðMZÞ ¼ 4paðMZÞ ¼ 0:098 0:425 1:546f g ð7Þ

3. Stability analysis

The set of three nonlinear differential Eqs. (2) and (3) based on (5) and (7) depends on the number of flavors
n, which plays the role of an independent control parameter. Qualitative changes in the behavior of coupling
trajectories are to be expected when n is finely tuned. As pointed out in Section 1, a typical assumption made in
QFT is that the coupling flow evolves towards a finite set of attractors consisting of isolated fixed points [17].
On this basis we require that (2) and (3) yield a coupling flow that is unique and stable. These constraints
amount to demanding that all Lyapunov exponents are real and vanishing with the exception of a single
one, which is either vanishing or negative. Expanding (2) and (3) about (7) yields the new coefficient vector

aðN ; nÞ ¼ 3g2
0ðMZÞbðN ; nÞ ¼ 10�3

2:482n

�5:382ð11� nÞ
�9:790ð33� 2nÞ

�
�
�
�
�
�
�

�
�
�
�
�
�
�

: ð8Þ

Following the Routh–Hurwitz criterion, the set of stability parameters assumes the form (see Appendix C):

pðnÞ ¼ �½a11ðnÞ þ a22ðnÞ þ a33ðnÞ�;
qðnÞ ¼ ½a11ðnÞa22ðnÞ þ a11ðnÞa33ðnÞ þ a22ðnÞa33ðnÞ�;
rðnÞ ¼ �a11ðnÞa22ðnÞa33ðnÞ;

ð9Þ

where akk(n), k = 1, 2, 3 are supplied by the components of (8). The characteristic equation is represented by
the cubic polynomial

DðnÞ ¼ k3 þ pðnÞk2 þ qðnÞkþ rðnÞ ¼ 0: ð10Þ
The constraint of a unique and stable trajectory implies

k1 ¼ k2 ¼ 0; ð11aÞ
k3 6 0; ð11bÞ

which yields

pðnÞP 0;

qðnÞ ¼ rðnÞ ¼ 0:
ð12Þ

We obtain the least squares solution

n ffi 7:3 ð13Þ

4. Discussion of results

Fig. 1 graphs the variation of the stability parameters with the flavor number. As expected, the least squares
solution lies at the intersection point of q(n) and r(n). There are two distinct interpretations of this result,
namely:

(1) the actual number of flavors in SM is indeed seven and so we should anticipate an extra fermion flavor to
be discovered in future accelerator experiments (such as, but not limited to, the fourth family neutrino
[9]);

(2) the stability analysis we have developed is only an approximation that needs further revision. One can
invoke here, for example, including higher-order corrections to (2) and (3), accounting for the Yukawa
sector of the coupling flow [19] or starting from the framework of non-perturbative RG flow equations
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[20]. The expectation is that, by using one or more of these scenarios, the actual number of SM flavors
n = 6 may be recovered at the end of calculations.
It is also instructive to note that the condition p(n) P 0 determines the largest number of flavors that
preserves the flow stability. From the graph we see that this number is nMAX � 14, consistent with the
maximum number of quark flavors that maintains asymptotic freedom in QCD [4].

5. Conclusions

The origin of the six known generations of active fermions continues to be an unresolved issue of SM. We
have examined in this work the possibility that the number of fermion generations is rooted in the stability of
the gauge coupling flow. Constraining the coupling trajectories to settle on a set of isolated stationary points
brings the number of flavors to seven. This result either makes room for an additional fermion generation in
future tests of SM or suggests that our stability analysis is valid only up to a first-order approximation. The
largest number of flavors for which the coupling trajectory remains stable was found to be fourteen. Future
works on the topic may be devoted to the analysis of the gauge coupling flow in the presence of higher-order
diagrams and/or random perturbations. A number of excellent studies exist on the subject of stochastic sta-
bility for multidimensional nonlinear systems. Although a complete listing is impractical, we believe that the
methodology discussed in [22–25] may provide a suitable starting baseline.

Appendix A. On the Standard Model for particle physics [1–8,10,19]

SM combines relativity and quantum mechanics in a unified conceptual framework known as relativistic
quantum field theory (QFT). Electromagnetic, weak and strong interactions are all included in SM and are
described by abelian and non-abelian gauge theories. The structure of SM is a generalization of that of
QED – the quantum theory of electromagnetic phenomena – to a larger set of conserved currents and charges.
In SM the matter fields have spin 1/2 and are divided into two groups: quarks (the constituents of protons,
neutrons and all hadrons) and leptons. There are six known generations (flavors) of quarks and six generations
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Fig. 1. Variation of the stability parameters with the number of fermion flavors.
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of leptons. There are eight color charges, which couple quarks in QCD and four electroweak charges, which
couple leptons and quarks. All interactions are carried through gauge particles of spin 1. They are, respec-
tively, the photon c, the three vector bosons of the weak interaction W þ;W �; Z0 and the eight gluons of
the strong interaction. The set of three interactions can be formulated in terms of unitary groups of different
dimensions. It is customary to denote the gauge structure of SM as a product expressed as
SU(3) · SU(2) · U(1). This notation has the following meaning: a gauge theory described by the group
SU(N) is defined in terms of N2 � 1 underlying gauge bosons. The group SU(3) is the gauge group of
QCD, which carries the 32 � 1 = 8 gluons of the strong interaction. The SU(2) · U(1) group represents the
structure of the electro-weak model with 22 � 1 = 3 corresponding massive vector bosons, namely (c,
W þ;W �; Z0Þ.

The interaction amplitude is determined by the magnitude of a coupling constant, generically denoted by g

or by the magnitude of the coupling strength a = g2/4p. A QFT characterized by a dimensionless coupling
constant g� 1 is said to be weakly coupled and it is well defined by an expansion in powers of g, called per-
turbation theory. Otherwise, the theory is said to be strongly coupled. Perturbation techniques have limited
applicability in strongly coupled theories and various non-perturbative methods have to be implemented in
order to derive meaningful results.

Appendix B. The renormalization theory of coupling flow

The underlying idea of renormalization is to avoid divergences that show up in physical predictions of QFT
by using systematic rules for performing calculations [1,2,7,8,19]. In general, a QFT is called renormalizable if
all infinities can be absorbed into a redefinition of a finite number of parameters. There are several technical
procedures to renormalize a field theory. One standard way is to cut off the integrals in the calculations at a
large but finite value of momentum (K). The renormalization is successful if, after taking the limit K!1, the
resulting quantities are finite and independent of K.

An important consequence of the renormalization program is that all parameters of the theory depend on
the energy scale at which the phenomena are recorded (l). The so-called beta function encodes the evolution of
a given parameter with the energy scale. For instance, the coupling flow equation is defined by the relation

l
og
ol
¼ bðgÞ: ðB1Þ

If the beta-functions of a QFT vanish, then the theory approaches a so-called fixed point where it becomes
scale-invariant. The coupling parameters of a quantum field theory can flow even if the corresponding classical
field theory is scale-invariant. In this case, the non-vanishing beta function indicates that the classical scale-
invariance is anomalous. If a beta-function is positive, the corresponding coupling increases with increasing
energy. An example is QED, where one finds by using perturbation theory that the beta-function is positive.
In particular, at low energies, the fine-structure constant measures aEM � 1/137, whereas at the scale of the
Z boson, about 90 GeV, the same constant becomes aEM � 1/127.9. In non-abelian gauge theories, the beta
function can be negative. An example is the beta-function for QCD whose coupling decreases at high-energies.
Furthermore, the coupling decreases logarithmically, a phenomenon known as asymptotic freedom. This means
that the coupling becomes large at low energies and predictions can no longer rely on perturbation theory.

Appendix C. The Routh–Hurwitz criterion

We review here implementation of the Routh–Hurwitz criterion in the case of a three-dimensional system of
nonlinear differential equations. For additional details, the reader is referred to [18]. Consider the three-dimen-
sional system:

_x1 ¼ a11x1 þ a12x2 þ a13x3 þ P 1ðx1; x2; x3Þ;
_x2 ¼ a12x1 þ a22x2 þ a23x3 þ P 2ðx1; x2; x3Þ;
_x3 ¼ a13x1 þ a23x2 þ a33x3 þ P 3ðx1; x2; x3Þ;

ðC1Þ
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in which the functions Pi contain no linear terms. The characteristic equation of (C1) takes the form of the
cubic polynomial

k3 þ pk2 þ qkþ r ¼ 0; ðC2Þ
where the three stability parameters are given by

p ¼ �ða11 þ a22 þ a33Þ;

q ¼
a11 a21

a12 a22

�
�
�
�

�
�
�
�
þ

a11 a31

a13 a33

�
�
�
�

�
�
�
�
þ

a22 a32

a23 a33

�
�
�
�

�
�
�
�
;

r ¼ �
a11 a21 a31

a12 a22 a32

a13 a23 a33

�
�
�
�
�
�
�

�
�
�
�
�
�
�

:

ðC3Þ

The Routh–Hurwitz stability condition amounts to the following condition:

p > 0; q > 0; r > 0 and R � pq� r > 0: ðC4Þ
Boundaries of the stability region are defined by two surfaces (r = 0,p > 0,q > 0) and (R = 0,p > 0,q > 0).

Eq. (C2) has at least one vanishing root on the surface r = 0, and a pair of imaginary roots on the surface
(R = 0,q > 0).
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